
The Trading-shim Manual

Bill Pippin

September 26, 2008

2

Copyright (c) 2007 Bill Pippin. May be redistributed with the trading-shim pro-

gram source code, or along with those sources when both are available from a web site.

To use otherwise requires permission.

Contents

1 Introduction 1

1.1 Outline . 1

1.2 Caveats . 2

1.3 Notation . 3

1.4 Acknowledgements . 3

1.4.1 Free Software . 3

1.4.2 Developing the Shim . 4

1.4.3 Learning About Finance . 5

1.4.4 Personal Thanks . 5

2 Why the Shim? 7

2.1 Background . 7

2.2 Motivation . 8

2.2.1 Why Not a Lightweight Library? 8

2.2.2 What Features Do We Want? 9

2.3 The Shim Architecture . 9

I Tutorial 13

3 Installation, Setup, and Startup 15

3

4 CONTENTS

3.1 Resource Requirements . 15

3.1.1 The Network . 16

3.1.2 The Trading-shim Database 16

3.1.3 The IB tws . 16

3.1.4 Resource Selection . 17

3.2 Program Configuration . 18

3.2.1 Download and Compile the Shim 19

3.2.2 Allow Connections to the IB tws 20

3.2.3 Provide the Connection Parameters 20

3.3 Database Creation . 23

3.3.1 Set the Dbms Isolation Level 24

3.3.2 Create the Databases . 24

3.4 Shim Startup . 29

3.4.1 Run the Shim . 29

3.4.2 Run the Test Scripts . 29

3.4.3 Locate and View Output . 32

3.5 The Shim Command Line . 32

3.5.1 Choosing the Mode . 32

3.5.2 Choosing Options . 33

3.5.3 Deciding Where to Run the Shim 34

3.6 Troubleshooting Connect Problems 34

4 Using the Shim 35

4.1 The trading-shim Command Set 35

4.1.1 Commands to Control the Shim 35

4.1.2 Commands that Trigger Requests 38

4.2 IB tws api Protocol Events . 38

4.2.1 Requests to the IB tws . 38

CONTENTS 5

4.2.2 Messages from the IB tws 38

4.2.3 Requests . 38

4.2.4 Messages . 40

4.3 The Downstream Text Protocols . 40

4.3.1 The Command Language 40

4.3.2 The Shim Output Format 40

5 Adding Info to the Database 43

5.1 Adding Symbols and Contracts to the Database 43

5.1.1 Data for the table Underlying 43

5.1.2 Data for the table Symbol 44

5.1.3 Data for the table Contract 45

II Reference 47

6 Languages and IO 49

6.1 The Binary Upstream Protocols . 49

6.1.1 Portability and the Tranfer Encoding 50

6.1.2 Common Features . 50

6.1.3 The Client – IB tws Handshake 51

6.2 The Shim Output Channels . 51

6.2.1 File Writes . 51

6.2.2 Database Posts . 51

7 The Database Architecture 53

8 Patterns, Tables, and Classes 55

8.1 Significant Design Patterns Used in the Shim 55

8.1.1 Binding Patterns . 55

6 CONTENTS

8.1.2 The Singletree . 55

8.1.3 Type Symbols . 55

8.1.4 Factories, Accumulators, and Wrappers 55

8.2 The Shim Database . 56

8.2.1 Database and Other Scripts 56

8.3 The Type System . 58

8.3.1 The Fundamental Three-Way Partition for Types 59

8.3.2 Multiple Inheritance in the Type System 59

8.3.3 Input Matching . 60

8.3.4 The Full Hierarchy . 60

8.3.5 Application Finite Domain Dual Types 60

8.4 Atoms: the Routeable Objects . 62

8.4.1 Database Tuples . 62

8.4.2 The Event Hierarchy . 63

8.5 IO Stream Objects . 66

8.6 Time-related State . 70

8.6.1 The TimeStamp . 70

8.6.2 The Clock . 70

8.6.3 The Timer . 71

8.6.4 The Scheduler . 71

8.6.5 The Task Set . 71

9 Stages of Computation 73

9.1 Initialization Via Construction of the Singletree 73

9.1.1 one::Constants . 75

9.1.2 iof::IoFlow . 75

9.1.3 one::Router . 75

9.1.4 Delayed initialization . 75

CONTENTS 7

9.1.5 Modes, Options, and Commands 75

9.1.6 Building the Internal Database Dependency Graph 79

9.2 IO Selection and Event Scheduling 80

9.2.1 Calculating the Processor Clock Frequency 80

9.2.2 Finite State Automata Definitions 81

9.2.3 Query Data Bar Intervals . 84

9.3 Input Analysis . 84

9.3.1 The Internal Database Update Algorithm 84

9.3.2 The Event Input Algorithm 84

9.3.3 Tokenization and Type Checking 85

9.4 Object Routing and Processing . 85

9.4.1 The Subscription Watchlist Update Algorithm 85

9.5 Output Processing . 85

9.5.1 Request Sending . 85

9.5.2 Dbms Post . 86

9.5.3 Event Logging . 86

9.6 The Position, OrderContext Command 86

9.7 The Wire Command . 86

9.7.1 Order Wire Format Specification 86

9.8 Dealing with Broken Compiles Caused by Preprocessor Macros . . . 86

10 Exploring the Sources Directly 87

11 Roadmap 89

III Appendices 91

A Related Command Scripts 93

A.1 The Makefile . 95

8 CONTENTS

A.2 Database and Table Setup . 95

A.2.1 Database Setup . 95

A.2.2 Table Creation and Recreation 95

A.2.3 Common Table Creation Scripts 95

A.3 The Regression Test Scripts . 95

A.3.1 bin/regress . 95

A.3.2 bin/unsafe . 95

A.3.3 bin/includes . 95

A.4 The Filter Scripts . 95

A.4.1 bin/c++.filter . 95

A.4.2 The Log Selectors . 95

A.4.3 The Binary Converters . 95

A.5 Directed Graph Diagram Construction 95

B Error Messages and Exceptions 97

C Library Components and Usage 99

C.1 Singletons and Constants . 99

C.1.1 The Components Singleton 99

C.1.2 The Memory Allocator . 100

C.1.3 The Token Type Hierarchy 100

C.2 Strings, Ids, Hash Codes, and Text Buffers 101

C.2.1 The String Component . 101

C.2.2 Hash Code Computation . 101

C.2.3 Buffer Types and Their Uses 102

C.3 Equivalence Classes and Logic Variables 107

C.3.1 Representing Equality Theories Via Disjoint Set Union 107

C.3.2 Single Assignment Pointers as Logic Variables 109

C.4 Block-Doubling Containers . 109

CONTENTS 9

C.4.1 Block-Doubling Via Handles 109

C.4.2 Vectors and Queues . 110

C.4.3 Splay Trees . 111

C.4.4 Hashed Functions . 112

C.5 Mostly Declarative Tables and Sequences 113

C.5.1 Logical Tables . 113

C.5.2 Sequences . 114

C.6 System Call Wrappers . 115

10 CONTENTS

List of Tables

1.1 Chapter page counts and completion status 2

3.1 Default user accounts . 27

4.1 IB tws api request names and codes 39

4.2 IB tws api message names and codes 39

4.3 Examples of the output format prefix 41

6.1 Examples of java locale and default encoding parameters 50

9.1 Agents, requests, and messages . 76

C.1 Buffer derived types and usage . 102

C.2 Indexing for table template classes 106

C.3 Case analysis for Handle::bind() 109

C.4 Frequency and other statistics for instances of Handle <> 110

11

12 LIST OF TABLES

List of Figures

3.1 Configuration choices . 18

3.2 Unpacking the sources . 19

3.3 The shim usage message, after typing ./shim 19

3.4 Key-value names and defaults . 21

3.5 A possible service entry for the IB tws in /etc/services 22

3.6 The default values for the shimrc file 22

3.7 An init option connect dialogue 23

3.8 Changing my.cnf . 25

3.9 Starting and stopping the shim . 29

3.10 Running the primary test script . 30

3.11 Screen shot of history, news, account data and contract data queries . 31

3.12 Screen shot of market and market depth data, ending with shim exit . 31

3.13 The mode message . 32

3.14 Resource limits to the IB tws . 33

3.15 The help message for options . 34

4.1 The Command Function Help Text 36

4.2 The Command Notation Help Text 37

8.1 Factory wrappers . 56

8.2 Database table foreign key dependencies 57

13

14 LIST OF FIGURES

8.3 Commands from the create.sql script 58

8.4 A hypothetical type derivation hierarchy 59

8.5 The top of the type symbol hierarchy 59

8.6 The type hierarchy . 61

8.7 Objects . 62

8.8 Terms . 62

8.9 Relational tables . 63

8.10 Records . 64

8.11 Commands . 65

8.12 Requests . 66

8.13 Messages . 67

8.14 Error messages . 68

8.15 Warnings . 68

8.16 Augmented atoms . 69

8.17 Sibling atoms . 69

8.18 Stream variants . 69

8.19 IO channel abstraction . 69

8.20 Mapper hierarchy . 70

8.21 Interface and private methods of the Clock 71

9.1 Tip of shim call graph . 73

9.2 The graph of singletons . 74

9.3 Modes . 75

9.4 Tasks . 81

9.5 States . 81

9.6 States . 82

9.7 Cursor states during event parsing 82

9.8 Shim process timer states . 82

LIST OF FIGURES 15

9.9 Subscription retry states . 83

9.10 Tick Ids . 85

A.1 Output from the make process . 94

C.1 Pools . 100

C.2 Buffer variants . 103

C.3 Vector implementation . 110

C.4 Queue implementation . 111

C.5 Stack implementation . 111

C.6 Set maps . 112

C.7 Map inheritance . 112

C.8 Domain maps . 112

16 LIST OF FIGURES

Chapter 1

Introduction

Given the appropriate exterior program, the shim provides a command-line and dbms

augmented interface to the classic three functions of any brokerage interface, manual

or automated: access to market data, execution of market transactions, and account

reporting.

What program provides the market services? The Interactive Brokers Trader Work-

station, IB tws client, or simply tws, consists of a socket-based api and java gui that

together provide access to both external markets and the user’s IB account. The shim

provides access to a running instance of the tws, and so these services, via the socket

api.

1.1 Outline

This manual provides both tutorial and reference information about the shim. Although

the tutorial, Part I, is intended to be most useful to the trader or researcher who is

writing downstream programs that would use the shim, and the reference, Part II, to

the developer looking to understand or modify the source code of the shim, there are

many cross references between the tutorial and reference, so that they are combined

here into one manual.

The tutorial describes installation, setup, and startup, in Chapter 3; use of the shim

command language, in Chapter 4; modifications to the database, in Chapter 5; and

a number of other application-specific topics, collected together in Chapter ??. The

reference has been commented out for now, about which more in the next section.

1

2 CHAPTER 1. INTRODUCTION

1.2 Caveats

The trading-shim is currently under active development, as is the IB tws, so that doc-

umentation for the shim aims at a moving target. Please understand that this manual,

as so the shim, is currently a work in progress. Much of the text is incomplete, partic-

ularly in the reference section, where it has been collected from many shorter works

written over the course of development, and not yet revised for consistency. That being

said, most of the tutorial is newly written for the benefit of the first-time user, if only

to answer support questions from the mailing list, and I hope the tutorial will be of im-

mediate use to readers. In addition, many of the diagrams in the reference section are

automatically generated, and these figures should be of great help to anyone tackling

the sources for the first time.

As an aid to the reader in estimating the amount of text in each chapter, and to help

one avoid repeatedly drilling down to empty sections, Table 1.1 gives the page counts

and status of each chapter. In that table, the nil sign [] indicates a chapter that is either

empty or nearly so, and a checkmark, one that has reached final draft status; those are

essentially complete outside of updates as either tables listed immediately prior to the

checkmark, or features listed in Chapter 11, are completed.

Ch Title Pages Status

1 Introduction 6 Table 1.1 X

2 Why the Shim? 7 X

3 Installation, Setup, and Startup 23

4 Using the Command Language 9 []

5 Adding Info to the Database ?? []

?? Using the Shim 5 []

A Related Command Scripts 5 []

Table 1.1: Chapter page counts and completion status

Feedback from readers has indicated that the partially completed chapters

of the manual were confusing, and so they have now been commented out. Those

chapters that are checked off in Table 1.1 are essentially finished, and are included

herein; those with a blank status entry are in the process of being written, and

may be included; and those with a status of nil, [], are just placeholders. Readers

who are not sure what the rest of this paragraph means should skip over it secure in the

confidence that they would not care even if they fully understood. Developers who wish

to look at the unfinished parts of the manual, in particular the reference, may compare

the files manual.tex, manual.full.tex, and manual.part.tex in the doc

directory, using say the diff utility, after which case the steps to build a bleeding-edge

version of the manual should be obvious. Or you can ask on the list, and I’ll be glad to

help.

1.3. NOTATION 3

1.3 Notation

Newly introduced terms are typically emphasized using an italic font the first time they

appear. Command line dialogues, source code fragments, and in some cases identifiers

borrowed from program source code are printed using a monospaced font.

Tables or figures that are referred to but not yet defined are indicated by double

question marks, ??, in the text, and a small square box in the online version; such

missing references can be found in the document sources by searching for the string

FIXME.

1.4 Acknowledgements

The trading-shim would not exist if Russ Herrold had not had the confidence and de-

termination to take risks by starting a partnership to develop it. I owe him not only for

the opportunity to write the shim, but also for constant encouragement, and especially

the many hours we’ve spent debating design issues. Our IT skills are complimentary,

and the shim is a much stronger program as a result of our dialogues. I’m fortunate

indeed to have been able to work closely with Russ these last two years.

Though Russ was the first user, there are now others as well. I’d like to acknowl-

edge here my debt to those who use the shim and have contributed feedback. Thank

you, those who have downloaded the shim, or joined the mailing list, or submitted

questions, whether to the list, or via private email. Every time I stop to think about

some question from a new user, I gain new ideas of how to make the shim widely use-

ful. Don’t ever discount the value of your own experience or knowledge; your fresh

perspective is precious. As an experienced developer, I well know how to implement

software; but it’s the comments and questions from you that teach me how to make it

useful to the community. I want to reemphasize this point: feedback from users —

your feedback — is critical to us. It plays an irreplaceable role is shaping our plans,

design, and especially roadmap. Please let us know what you think.

I’d also like to mention other debts, to: the free software ecosystem, § 1.4.1; tools

and references I’ve used during development, § 1.4.2; authors on finance, § 1.4.3; be-

fore, last, considering more personal debts, in § 1.4.4.

1.4.1 Free Software

I have too many debts for the universe of free software I use to ever hope for a compre-

hensive acknowledgement.

I’ll note, then, just two men who stand out, both in achievement and dedication.

Richard Stallman has been widely recognized and attacked alike for his extraordinary

http://www.owlriver.com/
http://www.trading-shim.org/download/
http://www.trading-shim.org/mailman/listinfo
http://www.stallman.org/

4 CHAPTER 1. INTRODUCTION

contributions to the free software ecosystem, in particular the General Public License,

the value of which becomes more and more apparent over time; his critics are them-

selves proof that he is a man of justice. Jon Postel is perhaps less widely known, yet

spent his life to create and protect a free Internet, as proven by the body of RFCs.

1.4.2 Developing the Shim

I have Stroustrup [1] at my side while I code; his book is a superb starting point from

which to learn C++. That language is in my opinion the first and still the best multi-

paradigm [2] [3] programming language to become widely available, and I’m fortunate

to be able to write programs with it.

Beyond my tremendous intellectual debt to the originator of C++, a number of other

texts were of direct help in the design and implementation of the shim.

There is no other algorithms text comparable to Cormen [4], and I would not have

been able to write the library components for the shim without the lessons I learned

from that text back in graduate school. Daniel Sleator [5] provided the initial code

for the splay tree component § C.4.3, and Bob Jenkins [6] [7] the initial code for the

hash code algorithm § C.2.2. In each case only their generosity in releasing the sources

without restriction made it possible for me to borrow from their work, and any remain-

ing problem with those components reflects on my implementation only, and not in any

way on their original work. Stevens [8] is the ideal reference for Unix system calls; it

was much harder to write programs to the Unix api before his text appeared. Comer

has not only written a superb introduction to TCP, but in addition his applications text

[9] is a great starting point for the development of any program that uses TCP sockets.

For anyone wanting to write programs using the MySQL C client library, the

Doorstop [10] by Dubois is an invaluable help; he’s even been kind enough to put

the critical chapter online. The transaction processing text by Gray and Reuter [11]

provided a critical contribution to our efforts to eliminate dbms-related race conditions.

When you need make to work right, there is no good alternative to the O’Reilly text

by Mecklenburg [12]. I look forward to acknowledging at some future time a working

debt to the New Rider’s Gnu autotools [13] text, though at this point we don’t yet have

a ./configure build process in place; it’s on our list of tasks not yet done.

It will be obvious to any reader who’s compiled the documentation, or even recog-

nizes the Computer Modern fonts, yet I’ll say it anyway: this manual wouldn’t exist

without the extraordinary expenditure of time and effort Knuth [14] devoted to TEX.

I use other tools to build on this foundation: Lamport’s latex [15] macro sys-

tem for TEX, Emden Gansner’s dot [16] graph layout program to create figures, and

Drakos’ latex2html [17] converter to produce the hypertext version of this manual.

I mentioned Stallman earlier, and his invention of the GPL, and how recent events

prove its importance more than ever. Closer to home, the licenses for latex2html

http://www.gnu.org/copyleft/gpl.html
http://www.postel.org/postel.html
http://www.rfc-editor.org/
http://www.kitebird.com/mysql-book/ch06-3ed.pdf

1.4. ACKNOWLEDGEMENTS 5

and gnuplot, whether considered truly free or not, (their terms seem problematic to

me when considered in the light of the last two of the Four Freedoms) demonstrate how

the General Public License is the right way to protect free software. In this vein I’d also

like to offer my thanks here to Eben Moglen, and his efforts on behalf of version 3 of

the GPL. Those of us who write — or, for that matter, use — free software owe a great

debt to the activists who struggle on our behalf.

1.4.3 Learning About Finance

Malkiel [18] was the first book on investing I ever read; it was published starting in

1973, and is now in the ninth edition. No matter how others may overstate the efficient

market hypothesis, still his book is a welcome antidote to snake-oil indicator tracts.

In my opinion, the most important book I have yet read on markets is by Mandelbrot

[19]; without it I would be hard-pressed to point out the flaws in the strong form of

the efficient market hypothesis. As a developer recently departed from academia, I

found the autobiography by Derman [20] fascinating for its personal look at software

development.

The rest of the texts that follow are much newer to me, though many readers will

have encountered them long ago. I list them below to note the debt my colleague, Russ

Herrold, acknowledges to them.

Graham [21] is famous as an influence of Buffet, and Lynch [22] [23] is a more

accessible starting point for the fundamentalist. Any technician needs encouragement

and warnings alike; war stories provide both, and the books by Schwager have them in

abundance: [24] [25] [26]. The portrait [27] of Livermore forms a class by itself. At

some point, the strategy researcher must consider actual trading algorithms, and here

there is much to be said for the classics, in particular the following invaluable works

by Keltner [28] Ainsworth [29] and Wilder [30].

1.4.4 Personal Thanks

Any reader who carefully examines this manual, the web site, or the component library

will realize I have definite ideas about how to reduce software complexity. I’m greatly

indebted to a fellow researcher, Jung Choi, for extensive discussions before I even

began work on the shim. We had hoped to carry out research together, and though

funding issues prevented it, I’d at least like to acknowledge here the importance of our

free-ranging discussions on software engineering, programming languages, and free

software.

The creation of free software has its own unique challenges, and my friends have

been great encouragement while I grappled with them. As the first user, Russ Herrold

has been such a good friend. In addition, outside of the workplace, Rich Burgan, Derek

http://www.fsf.org/licensing/essays/free-sw.html
http://gplv3.fsf.org/
http://www.wright.edu/~jung.choi/

6 CHAPTER 1. INTRODUCTION

Yang, Satya Pattanaik, and Marc Flynn have been sympathetic listeners to my blow-

by-blow accounts of the development process, showing much more interest than the

topic probably deserved.

My family also has been unstinting in their encouragement, my sisters Tina, Sonny,

and Tricia always there to listen, and my mother Paula Pippin steadfast and encouraging

over a very long time, not just for the shim, but before that with my graduate school

work also, which took much longer.

I have too many debts from grad school to mention here, and so for the most part

I’ll leave the acknowledgements in my dissertation [31] to carry that burden. A few,

however, are so far-reaching that I’ll repeat them here. A Buddhist teacher, Daisaku

Ikeda, with his emphasis on the value of life-long learning, provided the encourage-

ment that sent me back to school even after some time in industry, and my debt here

is far, far beyond any explanation. My first advisor, Spiro Michaylov, and second

advisor, Neelam Soundarajan, were each excellent teachers, and I owe much of my

achievements in grad school to them.

http://www.cse.ohio-state.edu/~neelam/

Chapter 2

Why the Shim?

Given the IB tws api, and the desire to use it, there are any number of possible software

designs with which to meet that end, and you may ask: why a standalone program, an

interpreter, with a database, and written in C++?

2.1 Background

Programs that talk to the shim, the shim itself, the tws client, and its connected and

indirect servers together make up a chain where every interior node is both a client and

server, and although data feeds back in loops, there is still a clear directionality from

the user to the external markets, and so throughout this text I’ll refer to the user-facing

node in this chain as the downstream, and the external servers as the upstream, so that

the chain becomes downstream-shim-tws-upstream.

Api and related IO objects are referred to collectively as events, and these events

are partitioned into four categories: commands, from the downstream to the shim; re-

quests, from the shim to the IB tws; messages, from the tws to the shim; and comments,

generated internally by the shim and sent downstream.

The IB tws api is complex, with about 50 request and message events defined, and

the largest of these, the place-order request, consisting of more than 50 attributes in

the latest version. No formal specification for this protocol language has been publicly

released by IB; instead, the source code for a Java program, the sample client, is the best

available guide to the request and message formats, which I refer to as wire formats,

reflecting their use in a socket protocol. Note also that the request-message language

is fundamentally asynchronous: some data is requested via subscription; the initial

response time for order events, though excellent for the common case, is unbounded;

and the children of bracket orders may fire at any time.

7

8 CHAPTER 2. WHY THE SHIM?

2.2 Motivation

To suggest the design, it’s useful to consider a simpler alternative first. The minimum

library interface of transparent wrapper procedures is surprisingly complex, and re-

quires significant additional functionality to be useful; providing these features brings

us to the shim’s design.

The same approach can be taken to justify the implementation of the shim — start

with an easily sketched, naive program architecture, then solve issues of reliability and

maintainability to arrive at the shim’s implementation architecture.

2.2.1 Why Not a Lightweight Library?

The minimum library interface is a strawman, brought up to be discarded. A library

could provide procedures to: open a socket to the IB tws; send and receive handshake

information; send data aquisition, order, and account related requests in accordance

with the api, and in response to procedure calls; and store the resulting messages as

events, to be forwarded, again in response to a library call. This buys us little, and

costs us much.

To see how little we gain, consider a transparent standalone program for the IB tws

api, one that reads and forwards handshake and other requests upstream, and similarly

messages to the downstream, transferring both as is. It adds an extra layer, and no

additional functionality whatsoever; clients must have full knowledge of the tws api to

use it, and given that, could just as well connect to the IB tws directly.

Note, then, the two problems that arise to the extent that we strive for a “thin”

interface: little or no additional functionality, and at the cost either of yet another new

binary api on top of the old, or at best a pointless interface layer. Obvious though these

problems may be, they’re hard to avoid: any programmatic interface to the IB tws

api must be carefully designed if it is to simplify access to the api without sacrficing

functionality.

The minimum library would replace a protocol api, admittedly binary but still a

language of requests and messages amenable to formal specification and open to pro-

grams in any language, with request and message procedures for each protocol event,

and with an interface every bit as large as the initial IB tws api. Clients need nearly full

knowledge of the base api, and there is a maintenance headache as well. The event pro-

cedure parameter objects and the primitives to lay their attributes out on the wire must

accord with the api, and yet testing those procedures for api conformance is hard, so

hard in fact, that other free software projects taking this approach have bogged down.

There are twin problems of scale, and efficiency: testing the correctness of the parts is

individually straight-forward but collectively onerous; and there is little to the library

besides the (large) interface, so that downstream clients are unnecessarily complex, due

both to the bulk of library-facing code, and the need to manage low-level api state.

2.3. THE SHIM ARCHITECTURE 9

I claim that maintainable interface software to the IB tws api must include table

driven specification of the protocol events, with the request send and message receive

processing driven by those table entries; that the downstream client must be able to

offload knowledge of api details to stored, shared tables, i.e. a database; and that the

interface must shield the client from api state, and take responsibility for api event state

where feasible. In any case, I refused to wade into the maintenance swamp of one-per-

event api send and receive procedures when I started the shim, and I reject it even more

firmly today, after having watched other projects struggle with this headache.

2.2.2 What Features Do We Want?

Request abstraction is the first and most critical feature, and the other features either

follow directly, or are closely related. The abstractions used to represent otherwise

complex request parameter lists must be defined somewhere, and a database system is

the best approach.

The mimimum library provides exactly three features besides api access. There

is message buffering; a shared address space, though that either at the cost of writing

downstream code in the same language, or passing requests and messages through

a foreign language api; and procedures that encapsulate the low-level format of the

requests, and provide some kind of “recv-msg’ abstraction to perform message parsing.

Considering each of these features in turn: Message buffering is necessary so the

IB tws won’t stall, and is part of any useful design. A shared address space might be

useful, to allow various parts of the library to be freely reused, though it should be an

option to the downstream, not a requirement. The last goal, however, of request and

message abstraction, provides the true justification for any api interface, and most of

the features of § 2.3 serve that end.

2.3 The Shim Architecture

The shim is a command interpreter: it provides a simple command language by which

clients can control the more elaborate IB tws api. The simplification is feasible since

a database defines contracts and orders, and commands may use keys to stand for the

related record values. Request state is tracked by the event router, which is meant to

detect errors where feasible, typically by managing timers to detect request failures.

A Command Interpreter

Once simplified via database abstraction, the command layer may be formally defined

as a language of events, that language specified to be textual, and the system that ac-

cepts this language be implemented as a command interpreter.

10 CHAPTER 2. WHY THE SHIM?

The shim is such a system; it accepts text commands from the downstream client,

and so simplifies implemenation of that client over the alternative of a direct socket

connection; uses a schema-driven parser that type-checks attribute values, constructs

events according to those schema, and recovers from message errors using a conser-

vative algorithm that discards only one token per mismatch; and simplifies debugging,

exposing the tws api protocol languages by echoing binary and text data to various

output channels.

A Database System

The api wire formats imply elaborate contract and order objects, and the permanent

definitions for these may be conveniently stored in a database, and referred to by name.

This notion of persistent contract and order records is the key to simplifying the com-

mand language used by the downstream to make requests. Since for the number of

symbols of interest, persistent data can be obtained from the database all at once, there

need be no time cost for contract and order database access once past initialization,

and in fact the shim has been implemented to slurp the entire database into memory at

startup.

Once given the fundamental purpose of supporting shared definitions of contracts

and orders between downstream clients and the shim, the database provides in addition

a store for historical data, a journal for orders, and a means to dynamically update the

shim during process execution. Though such access does cost time, it is either relatively

infrequent, as in the case of order journal entries, or can be offloaded to a subprocess,

as when history data is saved.

At this time history query writes are still performed by the main process. Although

this is not a problem for small, recent queries, e.g., the last hour’s worth of 15-second

data, it is probably best for the time being to use distinct process instances of the shim

for large history queries and orders, respectively. Since, one, there should be no need

to perform large history queries as part of a high-frequency trading strategy, and two,

up to four instances of the shim can share the same IB tws server, as it accepts up to

eight api socket connections, and the shim uses at most two, then it is perfectly feasible

to partition bulk data collection and order computation in this way.

An Event Router with Timing

The shim must read from multiple inputs at arbitrary times, at a minimum both the

downstream client and the upstream IB tws, and so it can not block for input from

either one. Process threads are widely used for such multiplexed IO.

From the viewpoint of the downstream user, the client-shim system necessarily

includes time-dependent control. Timeouts, the simplest case, are required if we are

to detect lack of response, as when requests are ignored, and other requirements can

2.3. THE SHIM ARCHITECTURE 11

lead to significantly more complicated reactive control. Such control is difficult to get

right, and critically important; consider, e.g., a downstream client program updating

a graph from the results of recurring history queries, where the program must either

have current data, or signal that the data feed has dried up. Again, process threads are

widely used for such reactive control.

Quite often, as here, threads save no time whatsoever, and in that case I prefer to

use the select() system call, both for IO multiplexing, and as the foundation of re-

active control. Once having abandoned the unecessary complexity of threads, a single

thread of control and straight forward domain analysis lead naturally to a schedul-

ing/dispatching control object, for the shim named the Router.

The Router plays a leading role in the read-route-write loop that provides the high-

level control for the shim, controlling either directly or by its data members: the wait

for input, using select(); the task scheduler, responsible for timeouts and periodic

events, such as recurring history queries; and event dispatch, or routing, once events

have been read from input.

The Router and its included children work efficiently to keep track of time by using

multiple time scales of: seconds, 20 millisecond intervals, and the processor clock rate

itself. The first time scale is from the downstream application domain, e.g. for time-

outs; the second, from the maximum allowed sustained frequency for IB tws requests;

and the third is chosen for implementation reasons.

Each of these clocks is read by the shim, and though none is ideal by itself, used

together judiciously they provide accurate time-keeping and precise timestamps at low

time cost. In brief, the select() timeout is set with the IB tws request period;

the localtime() system call is used, for seconds, once the select call returns, to

detect timeouts, and 1 second clock ticks; and the processor read time stamp counter

instruction, also rtsc, provides fine granularity, both for event timestamps, and to

check the select timeout. This test is to ensure that 20 milliseconds have actually

passed, since although the processor rtsc result may rollover, or lose time depending

on power-save settings, it can be trusted in any case not to be fast, and the 1 second

timer serves as backup if it has been stopped by sleep.

Conclusion

The shim uses a database to offload complex api request details; a text command lan-

guage to provide convenient, simple access to the request api; interleaved text output

of commands, requests, messages, and endogenous comments; and a single-threaded

router architecture for task scheduling and event processing.

Perhaps most critical for maintainability, it uses a table driven parser, with schema

tables for each kind of event, and where the rows of those tables are attribute type

vectors for each particular event, so that much of defining a new request or message

event boils down to declaring type symbols for any new attributes, and adding a row

12 CHAPTER 2. WHY THE SHIM?

of the appropiate attribute symbols, named for the event, to the related schema. The

resulting design has proved remarkably robust and flexible.

Part I

Tutorial

13

Chapter 3

Installation, Setup, and Startup

Once you use the IB tws to connect to the outside world, you become part of the

much larger market, formed from traditional exchanges and electronic crossing net-

works (ECNs), other market customers and brokerages, and of course IB and its sys-

tems.

The subsystem consisting of your system together with the IB-provided services

it connects to is itself complex, consisting of your IB tws account and its servers, the

network links to those servers, one or more instances of the IB tws program that use

the net links, a dbms server for the use of the shim, most likely multiple databases

installed on the server, multiple roles for the shim, and, what justifies the entire system,

the downstream programs you use to access the markets.

Setup for your market access system involves more than just program configuration

for the trading-shim program by itself, requiring that you set up a networked system,

including in particular the IB tws, the shim, and its database, leaving aside any down-

stream programs you might also use with the shim. To use the shim, you will need to

locate resources § 3.1; compile the shim, and configure the shim and IB tws § 3.2; and

create and load the database § 3.3. At this point you should be ready to run the shim

§ 3.4.

3.1 Resource Requirements

You’ll need the trading-shim sources, which are at http://www.trading-shim.com/. In

addition, you’ll need a network connection (§ 3.1.1); one or more computers setup to

run Linux, and with MySQL (§ 3.1.2) and the IB tws (§ 3.1.3) installed; and one or

more accounts with IB (again, § 3.1.3). Note that you may have multiple database

servers and IB tws accounts; that the trading-shim, MySQL, and IB tws are all network

15

http://www.trading-shim.com/

16 CHAPTER 3. INSTALLATION, SETUP, AND STARTUP

aware; and that, in consequence, you have many possible configuration choices for

your market access system (§ 3.1.4).

3.1.1 The Network

The IB tws program needs network access. Although you may well want to have more

than one network link to improve system reliability, the configuration and security

issues involved with obtaining network connections to the outside world are beyond

the scope of this tutorial, and in any case have little impact on shim configuration,

since the IB tws serves as an intermediary to the upstream net.

This by no means detracts from the importance of such issues. Although network

configuration planning will not be considered furthur herein, it would nevertheless

seem prudent to have multiple network connections if you intend to risk real money

by making trades with the IB tws. Please also keep in mind that network connections

to the IB tws program from the trading-shim require that the tws accept a network

socket connection, and that such connections are not themselves secured by password

access, so that both your network and your IB tws host must be secure.

3.1.2 The Trading-shim Database

If you look at source files, you’ll see near the top a line that includes the following text:

shim: dbms-augmented command interpreter for Interactive Brokers’ tws api. Mention

of the dbms is by design. The supporting database is fundamental to use of the shim,

since it’s the only way that the shim command language can be simplified beyond that

used by the tws api.

Currently the only dbms system that works with the shim is MySQL. Although this

may change in the future, for now, you must have mysql installed on your system to

use the shim. Given a reasonable linux distribution, MySQL is just a package away, so

what follows expects you to have a MySQL server available to you.

Current development of the shim takes place against a 5.0 series MySQL, which is

important due to its support for foreign key dependency checking with InnoDB tables.

The version of your server should not be an issue unless you are running a very much

out-of-date system, in which case you should consider upgrading your MySQL server,

and realize otherwise that use with a 4.x server is unsupported.

3.1.3 The IB tws

The Trader Workstation (tws) is available from http://www.interactive.brokers.com/. If

you have not done so already, download the IB tws system from their site, and install

http://www.interactive.brokers.com/

3.1. RESOURCE REQUIREMENTS 17

it according to their directions. The IB tws requires Java 1.5 or better, so you will need

to have Java installed as well.

Although you do not provide IB tws account information to the shim, you will of

course need some form of account information to start the IB tws. You may choose

to use the demo account, with user name edemo and password demouser, though

please note that important features of the IB tws api are then either untrustworthy (mar-

ket data) or do not work (history queries). You may have already set up and funded a

trading account with IB, and obtained in return a user name and password that may be

used to start the IB tws. Finally, you may have obtained as well a paper account, which

allows you to connect with the same market data and history query privileges as your

real account, though without the risk to your account balance.

Please, if you have a real account, obtain the paper account it entitles you to as well,

and limit your initial use of the shim to environments where the only available IB tws

program running is one that has connected to its upstream through the paper account.

You alone are responsible for the use of your IB account, including indirect use via the

shim. Avoid using your real account with the shim unless and until you are certain that

you understand and accept the related risks.

3.1.4 Resource Selection

Each component of a market access system provides opportunities for redundancy to

provide flexibility and improve reliability, from the network connection, through the

tws process, dbms server and database, to the shim process itself. Issues related to con-

figuration planning for redundant hardware resources, and in particular fault tolerant

systems [11] are, however, outside the scope of this manual.

I’ll focus instead on the flexibility and complexity that stem from multiple accounts,

databases, and shim process instances. Note first that the shim has two primary roles,

one of collecting market data and history queries, the other of submitting orders and

watching the positions that result. These two roles are referred to as modes, about

which more later, and for now it’s enough for them to have names, data and risk

respectively. Recall that for each real account you open with IB, you may also open a

paper trading account, and that given such an account pair, and in the event you want to

have both open at one time, you will need to run two instances of the IB tws, since each

tws process connects to just one account. (Even though using both accounts at once

may not be the common case, it may well be useful on occasion, e.g., if development

and operational use coincide.) In this case the account information for the paper and

real accounts would probably correspond to test and operational data, and distinct order

journals should be used for each case. Such operation leads to two shim processes, one

for each of the modes, each using a dedicated account and database, and each driven by

separate downstream scripts, giving us e.g., the process-database diagram of Figure 3.1.

The configuration problem here boils down to ensuring that programs talk to the correct

counterpart and share an otherwise private database in common between themselves.

http://www.interactivebrokers.com/en/software/paperTrader.php?ib_entity=llc

18 CHAPTER 3. INSTALLATION, SETUP, AND STARTUP

downstream, data user db account

downstream, risk user db account

shim --data

testing db

trading db

shim --risk

IB tws paper account

IB tws real account

Figure 3.1: Configuration choices

Consider the case where data is being collected under the paper account, and live

trading is going on with the real account. The downstream scripts will naturally talk

to the correct shim process since they or a parent script probably took responsbility for

starting those shims in the first place, which leaves two issues. There is a need for,

one, database synchronization between downstream and the shim, and two, configura-

tion control over shim connections to database server and IB tws. Both can be met if

information is shared between downstream and shim, either via a shared configuration

file, or an event sent from downstream to shim, and in fact either may be used, about

which more in § 3.2.3. The result with respect to Figure 3.1 is that only solid edges

would connect processes and databases, and that the dashed edges would be elided for

this example.

The scenario above motivates one up-front resource choice and a couple of design

decisions. There is a real need for multiple IB tws accounts, and even if multiple

real accounts prove inconvenient to obtain, this need can be met at least in part by

real-paper account pairs. There is a need also for multiple copies of a single database

structure, which can be met with sql create-table scripts run in the context of distinct

database names; and an easily shared format for the trading shim configuration file,

since downstream programs need to read it too. Shim configuration is described in

§ 3.2.3, and cloning the database, in § 3.3.2.

3.2 Program Configuration

In brief, download, unpack, and compile the trading-shim § 3.2.1; configure the IB tws

to accept incoming socket connections § 3.2.2; and configure the connection parameters

by which the shim connects to the database and IB tws 3.2.3.

3.2. PROGRAM CONFIGURATION 19

3.2.1 Download and Compile the Shim

If you haven’t already, download the sources from the trading-shim site. Choose a di-

rectory in which to place the tarball, and unpack the sources, using the tar command,

Figure 3.2. E.g., tar xzpvf shim-070810.tgz, where x means extract; z, un-

compress; p, preserve permissions; v, verbose file listing; and f refers to the tarball

file name, here a daily from August tenth.

src$ tar xzpf shim-070810.tgz

src$ ls shim-070810

bin dep INSTALL log mk.patch pdf ROADMAP src

COPYING doc lib Makefile NEWS README sql www

src$

Figure 3.2: Unpacking the sources

Compile the sources. The Makefile is currently set to use g++ directly, although

you may also use distcc if you have it installed. From the directory into which tar

unpacked the sources, in the example above shim-070810, from the shell command

prompt, simply type make. For those uncertain about what to expect from this step,

there is more information about the Makefile script in § A.1.

You can verify that the compile succeeded by trying to run the shim, from the

shell command prompt, simply typing the (incomplete) command ./shim. The shim

should start and quit, with the usage message of Figure 3.3, in which case you know

that the compile succeeded.

shim-070810$./shim

Usage: shim <mode> [optional feature list]

Modes:

--help # print this explanation and list the optional features

real modes, requiring access to an IB tws:

--data # process subscriptions and log resulting tick stream events

--risk # accept full command set, send requests, and log all events

test modes, with no connection to the tws:

--play # read events from the image file and send text to stdout

--unit # for internal use; unstable though otherwise harmless

Figure 3.3: The shim usage message, after typing ./shim

http://www.trading-shim.com/download/

20 CHAPTER 3. INSTALLATION, SETUP, AND STARTUP

3.2.2 Allow Connections to the IB tws

Once you are able to start the IB tws, you will need to configure it to accept connec-

tions from the shim, by enabling api clients, and defining the shim’s IP address to be

trustworthy. From the configure→ api menu option, check Enable SocketX and API

Clients; and via the configure→ api→ Trusted IP Addresses dialogue, enter the shim’s

host IP number to be a trusted address. E.g., for the shim connecting as localhost, the

IP number 127.0.0.1 must have been entered as a trusted IP number.

This last step, of defining the shim’s host IP address to be trusted, is critical. Oth-

erwise, the accept incoming connection dialogue will pop up, the shim’s connection

attempt will timeout, and the shim will giveup and quit.

3.2.3 Provide the Connection Parameters

Connection parameters for the shim may be provided via any of the following means, in

increasing order of priority: the hardwired default connection parameters in data.c;

or a configuration file, the .shimrc file, in the home directory or current directory; or

command input via the dbms and feed commands, triggered by the init option.

The connection parameters are the most important of the configuration parameters

that a non-programmer user might still reasonably choose to alter. All the parameters

are named values, and so are defined by key-value pairs, about which the next section,

after which the three means of connection control — config file, init option, and source

code patch — will be considered.

The Configuration Key-Value Pairs

The configuration keys known to the shim are listed as the second column of Figure 3.4.

Each key has the default value hard-coded into the source code of the shim, and may

also appear in a configuration file, in which case the default is overridden. The linkage

parameters are also overridden via the dbms and feed commands if you use the init

option.

The DbmsName and FeedName values are currently limited to the default values,

fixed as mysql and tws, respectively, can’t be changed, and so may be ignored. They

exist mainly as placeholders within the two link commands dbms and feed, so that

the format of the commands allows for additional types of dbms and upstream market

feed in the future.

The DbmsHost and FeedHost values are critical, since without a waiting database

server and IB tws program at the indicated machine locations, the shim will quit. You

may use either domain names or ip addresses, and if you have mysql and the IB tws

running on the local machine, the default value of localhost is what you want.

3.2. PROGRAM CONFIGURATION 21

Category Key name Default value Type

database linkage DbmsName mysql string

DbmsHost localhost ”

TableSet testing ”

UserName shim ”

Password 0 ”

upstream linkage FeedName tws ”

FeedHost localhost ”

FeedPort 7496 ”

log file names ShimText ShimText ”

CmdEvent cmdinput.txt ”

ReqEvent shim2tws.bin ”

MsgEvent tws2shim.bin ”

timeouts (secs) InitTime 20 number

FeedTime 3 ”

Figure 3.4: Key-value names and defaults

The TableSet value determines which database you are asking the dbms server

to give you access to, and if you have run the database setup script of § 3.3.2 as is, the

possible values are testing and trading. The UserName chooses the account

name within that database, and again, shim is an account name provided by the dbms

setup script. You need not have a password for your database account unless you so

choose — the setup script does not select one — and the default value of zero stands

for no password.

The log file names are with respect to the current directory, and will be discussed

furthur in § 3.4.3. Of the timeouts, the value of InitTime determines how long you

are given to enter the dbms and feed commands if you use the init option to pro-

vide the link parameters, about which more in the next section, while the FeedTime

timeout is considered as part of troubleshooting in § 3.6.

In Figure 3.4, the fourth column, labelled “type”, indicates what kind of values

may be provided; strings are sequences of non-blank but otherwise arbitrary characters,

while the numbers used for timeouts must be non-empty digit strings with neither sign

nor decimal point.

For those curious about the use of the string type for the IB tws port number, it is

also possible to use a service name, an entry from /etc/services, as the value for

the FeedPort key. If the entry name you choose is not already used in that file, and

you have added an new entry at the end of the file, e.g., the line in Figure 3.5, then you

could use the service name, here tws, for the FeedPort value.

Though possible, this is definitely not desirable for the individual user for reasons

of security; why would you want to publicize access to your private IB account? It’s

conceivable that such a service-based approach might be of use on a corporate lan,

22 CHAPTER 3. INSTALLATION, SETUP, AND STARTUP

Local services

tws 7496/tcp # IB tws

Figure 3.5: A possible service entry for the IB tws in /etc/services

with individual servers providing paper accounts as a published service, and the ports

for real accounts being less well known. The administrators for such a system must

understand the security issues involved in publicizing the IB tws port, and such config-

uration is not supported.

Controlling the Configuration Parameters

If you set up the database to use the default tableset and account names provided by

the setup script, about which more in § 3.3.2, and both your database server and IB tws

process are running on the local machine (localhost), then you may well be able

to accept the defaults as is. Othewise, you will have to provide corrected connection

values to the shim.

shim-070810$ ls -a .shimrc

.shimrc

shim-070810$ cat .shimrc

DbmsHost localhost

UserName shim

TableSet testing

FeedHost localhost

FeedPort 7496

Figure 3.6: The default values for the shimrc file

The shim will attempt to read the .shimrc configuration file, hereafter referred

to simply (and imprecisely) as the “shimrc” or config file, if it occurs in the home or

current directory. Since a default shimrc file is provided with the distribution, then the

shim will see the config file if you run it in the same directory where you unpacked the

sources, as in Figure 3.6.

The shim program accepts a reasonably flexible format for the config file. As shown

in Figure 3.6, the file consists of name-value pairs, and those pairs may be in any order.

Not all pairs need be provided; if the shimrc file is incomplete, missing values are filled

in by the defaults in the source code, from the file data.c. Each pair must be on a

line by itself, and the file must have left-aligned pairs only, that is without comments,

blank lines, or leading whitespace.

3.3. DATABASE CREATION 23

You may also provide the connection parameters as input if you start the shim with

the init option, that is if that option name occurs on the command line. In that case,

the shim will prompt for the dbms and feed commands, e.g. Figure 3.7.

Enter the dbms connect parameters via the dbms command, using the format:

dbms DbmsName DbmsHost TableSet UserName Password;

dbms mysql xps400 testing shim 0;

Ok

Enter the upstream connect values via the feed command, using the format:

feed FeedName FeedHost FeedPort;

feed tws localhost 7496;

Ok

Figure 3.7: An init option connect dialogue

Note that the program prompts for the commands one at a time, giving the format

of the command using the key names to stand for values, then echoing the input, and

finally confirming the input syntax as “Ok” after command validation by the parser.

Note also that there is at this point no assurance that the connection parameters are

valid, only that they provide the expected number of strings.

There is a total of InitTime seconds, by default 20, for you to provide input

in response to the command prompts, after which the shim will quit. Since for the

common case such commands would be sent to the shim via a controlling script, the

timeout value isn’t critical, but if you’re experimenting with manual input for the init

option, add an entry for the timeout to your config file, and feel free to adjust it as

needed.

Although you may prefer in the future to use the init option as your standard means

of connection parameter input, for the purposes of this guide, and your first attempt at

running the shim, please either check that the default connection parameters will work

for your configuration, or else edit the default config file as needed, since the text of

§ 3.4 expects you to either have valid defaults, or a valid config file.

3.3 Database Creation

Given that you have a MySQL database server installed, the following sections explain

how to configure it to run in ANSI mode, § 3.3.1, and set up the trading-shim databases

testing and trading, § 3.3.2. The testing database is intended for use with an

IB paper account and the regression test scripts that accompany the shim, while the

trading database may be used with a real account, if you so choose to take this risk.

24 CHAPTER 3. INSTALLATION, SETUP, AND STARTUP

3.3.1 Set the Dbms Isolation Level

For safe operation, the shim program requires that the sql server run with the ANSI sql

isolation level set to SERIALIZABLE in order to prevent phantom reads, that is that

the mysql default sql isolation level be changed from the default and oxymoronic level

of REPEATABLE-READ to the safer level of SERIALIZABLE. This is necessary to

ensure that transactions are ACID, that is atomic, consistent, isolated, and durable. The

trading-shim checks for this property, and, by design, will not start without it.

There are various ways to control the isolation level; for mysql it may be set: at

the session level; on the server command line; via a command, e.g., “set global

transaction isolation level serializable;” as by past versions of

the setup script; and in the server configuration file.

Partial change, on a per session basis, misses the point that all database applica-

tion write access should be safe and transactional, so that the data can be trusted, and

so about which no more. Command operation unfortunately does not persist, so that

although placing the command in the setup script solved the problem temporarily, the

change was lost after the first server restart. The apparently most straight-forward

approach might seem to be to edit the mysqld command line in order to add the ar-

gument --sql-mode=ANSI, so ensuring conformance with a number of ANSI sql

requirements, including the isolation level. 1 Most systems start the mysql server au-

tomatically, when the system starts up, and so doing this would require changing the

init or startup script for the mysqld program. Since these scripts vary from one plat-

form to the next, and are somewhat opaque even on Linux, this leaves the last option,

modification of the server configuration file.

Edit the /etc/my.cnf file to insert the line transaction-isolation =

SERIALIZABLE in the mysql stanza. Figure 3.8 gives a patch against that file, and in

fact the patch may be found as the file sql/mysql.iso.patch in the distribution.

Note that applying this change will require root authority.

3.3.2 Create the Databases

Use the setup.sql script in subdirectory sql to create the initial set of user acccounts, the

testing and trading databases, and their tables, as well as to load the tables with initial

values; or else treat the setup script as a starting point to see how to build a database

according to your own naming and security policy, and use the script create.sql, also in

the sql subdirectory, to create and load the database tables.

1If you choose to set the sql-mode via sql-mode=ANSI, whether from the command line or in the

configuration file, be aware that this approach is neither recommended nor supported. It disables a number

of mysql extensions to the syntax of ANSI sql, including the freedom to use double quotes in place of

single quotes for strings that have embedded single quotes, as with some of the database symbol load scripts.

Perhaps more critically, there are also reports of additional restrictions on the use of sql reserved words as

identifiers.

http://dev.mysql.com/doc/refman/5.1/en/ansi-mode.html

3.3. DATABASE CREATION 25

*** my.cnf-OLD 2007-04-20 16:10:13.000000000 -0400

--- my.cnf 2007-04-20 16:10:13.000000000 -0400

*** 9,14 ****
--- 9,18 ----

user=mysql

basedir=/var/lib

+ [mysqld]

+ transaction-isolation = SERIALIZABLE

+

+

[mysqld_safe]

log-error=/var/log/mysqld.log

pid-file=/var/run/mysqld/mysqld.pid

Figure 3.8: Changing my.cnf

Using the setup.sql Script to Create the Databases

More precisely, and given that you accept the naming and security choices in the

setup.sql script, do the following:

1. Obtain the mysql root account password; and note that the mysql root account is

distinct from the linux OS root account. Login access for the mysql root account

is often restricted to prevent network logins, and in that case you will also need

login access to the machine where the database server runs as well, although here

an ordinary user account should work just fine.

2. Ensure that the shim tar ball has been unpacked on the machine from which you

intend to login to the mysql database, or else copy the subdirectory sql with all

its contents and subdirectories to that machine. For reasons already noted in (1),

the machine you use may well be the one that the mysql server itself runs on.

3. From the directory sql, and given read access to the sql directory, its subdirecto-

ries, and files, start the mysql interpreter as the [mysql] root user:

mysql -u root -p

The -p option will cause the mysql program to prompt you for the mysql root

password, which you must have obtained previously, in (1).

4. You should see text approximately like the following, indicating that you have
obtained a mysql interpreter prompt:

mysql -u root -p

26 CHAPTER 3. INSTALLATION, SETUP, AND STARTUP

Enter password:

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 928 to server version: 5.0.27

Type ’help;’ or ’\h’ for help. Type ’\c’ to clear

the buffer.

mysql>

5. Enter the following command in order to create user accounts, the testing and
trading databases, create the tables for those databases, and populate them with
initial values. You should see many status messages fly by (on the order of a cou-
ple of hundred; in the dialogue below, the ellipses indicate many rows scrolling
past), and ending with the mysql prompt:

mysql> source setup.sql

...

Query OK, 12 rows affected (0.00 sec)

Records: 12 Duplicates: 0 Warnings: 0

Query OK, 4 rows affected (0.00 sec)

Records: 4 Duplicates: 0 Warnings: 0

Query OK, 4 rows affected (0.00 sec)

Records: 4 Duplicates: 0 Warnings: 0

Query OK, 0 rows affected (0.00 sec)

mysql>

6. To verify that the testing and trading databases have been created, you may list
the databases (note the semicolon):

mysql> show databases;

+--------------------+

| Database |

+--------------------+

| information_schema |

| lost+found |

| mysql |

| testing |

| trading |

+--------------------+

5 rows in set (0.00 sec)

mysql>

7. To verify that tables have been created, you may set the database to testing, and
list the tables (again, ellipses indicate elided material):

3.3. DATABASE CREATION 27

mysql> use testing

Database changed

mysql> show tables;

+-------------------+

| Tables_in_testing |

+-------------------+

| AtomTag |

| BarSize |

| Bool |

...

| Underlying |

| Version |

| Volatility |

| WatchSets |

+-------------------+

50 rows in set (0.00 sec)

mysql>

8. Type quit at the prompt to end the mysql session:

mysql> quit

Bye

sql$

At this point the shim databases have been created, tables for those databases cre-

ated and populated with default values, and user accounts created for the four roles of

shim program operation, downstream data collection, downstream orders, and offline

maintenance and programming; the account names are listed in Table 3.1.

Name User Intended Role

shim program database connection by the trading-shim program

data program downstream programs that run the shim in data mode

risk program downstream programs that run the shim in risk mode

code person interactive access and database maintenance

Table 3.1: Default user accounts

Please understand that although the testing database has default order informa-

tion, so that the regression scripts can demonstrate simple reversing orders, the trading

database has not yet been populated with the order lineitems referred to by downstream

order commands, about which more in Chapter 4. Although databases have been set up

at this point, you should not yet be trying to submit orders from downstream programs

to the shim for transmission through the api to the IB tws.

28 CHAPTER 3. INSTALLATION, SETUP, AND STARTUP

Using the create.sql Script to Recreate the Tables

You may find it convenient to use the create script as part of a custom database setup

process, e.g., if you would rather create the databases via manually entered commands

instead of running the setup script mentioned previously. You do not need to run the

create program if you have already run the setup script, as the tables have already been

created as part of that process.

You should also feel free to recreate the testing database tables as needed, and in

any case, you will need to do this to upgrade your table design as new versions of

the shim are released. The create.sql script, in particular, is provided to enable you to

rebuild the tables without again obtaining mysql root access; you should only have to

run the setup.sql script once, while the create.sql script may be executed many, many

times during development.

If you are considering table recreation after some period of program operation, you

should realize that the OrderJournal table contains accounting information about the

orders, if any, that you have made, so that if you use a real IB account with the trading

database, as opposed to the paper account that should be used with the testing database,

you will need to first preserve the logical contents of that table.

In the case that you wish to recreate the tables and load their initial values, recall

that the setup script above created a user account code, meant for general purpose

programming and maintenance of your trading-shim databases. Use this account to

connect, and run the create.sql script, as illustrated below. Note that in the example

here the account is not protected by a password; and again, the ellipses indicate missing

material, as many rows scroll by, with values similar but not identical to those for the

“source setup.sql;” step above.

sql$ mysql -u code testing

Reading table information for completion of table and column names

You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 928 to server version: 5.0.27

Type ’help;’ or ’\h’ for help. Type ’\c’ to clear the buffer.

mysql> source create.sql;

...

Query OK, 8 rows affected (0.00 sec)

Records: 8 Duplicates: 0 Warnings: 0

Query OK, 1 row affected (0.00 sec)

Query OK, 3 rows affected (0.01 sec)

3.4. SHIM STARTUP 29

Records: 3 Duplicates: 0 Warnings: 0

mysql>

mysql> quit

Bye

sql$

3.4 Shim Startup

Given a co-operative mysql server and IB tws, properly compiled shim, and valid con-

nection parameters, whether via defaults or config file, at this point you should be able

to start the shim (§ 3.4.1). Perhaps more to the point you want to see how it works

(§ 3.4.2) and in particular view the output (§ 3.4.3).

3.4.1 Run the Shim

Recall from § 3.2.1 that as part of startup, the shim must have a mode value on the

command line, typically either --data or --risk. For now we’ll use --data

mode, which is well suited to collecting market data, but does not allow you to submit

orders. Although there are other modes, and also a number of optional features, we’ll

put those aside for now, leaving them for the next chapter. From the directory where

you unpacked and compiled the shim, enter the command ./shim --data.

shim-070810$./shim --data

The trading shim has finished program initialization, including the

construction of successful connections to the database and IB tws.

quit;

Figure 3.9: Starting and stopping the shim

Ideally you should see the connect message of Figure 3.9, after which you can stop

the shim by entering the quit command. If you mistype it, just re-enter it, each time

on a line by itself, ending with the semicolon, and lastly pressing return. Or, feel free

to type CtrlˆC; it won’t hurt anything here.

3.4.2 Run the Test Scripts

The primary test script, bin/regress, can be run either as part of making the shim,

via the make target make test, or directly. It runs the shim in data mode, so that

30 CHAPTER 3. INSTALLATION, SETUP, AND STARTUP

no orders can be made, and sends a variety of subscription and query requests to the

IB tws.

From the directory where you unpacked the shim, type the command

bin/regress, as in Figure 3.10. The shim should connect, and after the connect

messages bits and pieces of cruft may appear on the screen; these would be debug

output that occur as part of ongoing development and are sent to the stderr, and may

for the most part be ignored. Much more to the point, however, an additional konsole

window should pop open on the screen and remain open until the shim exits.

shim-070810$ bin/regress

The trading shim has finished program initialization, including the

construction of successful connections to the database and IB tws.

Call 1

ScimInputContextPlugin()

Hcmd: 3 15

Info: 0xb713effc 0xb6fcc424

Info: 0xb714731c 0xb6fcc6b4

src$ ˜ScimInputContextPlugin()

Figure 3.10: Running the primary test script

Figures 3.11 and 3.12 are screenshots from the begining and end of the traced

output from bin/regress script. The text in the figures consists in essence of the

log output file ShimText echoed to a konsole window by the Unix utility tail,

and you can look at the scripts bin/tail.window and bin/log.filter to see

what is happening.

In Figure 3.11 we see the progran banner, market data and history farm status mes-

sages from the IB tws, a history query and its answer, the status message as that result

is inserted into the database, a news check, and a subscription to account data.

Figure 3.12 consists of tick data for a number of symbols that were subscribed to

earlier in the session via the bulk subcription command, the quit command, and one

lonely tick message bringing up the rear, since the quit is not acted on until all events

from the current time tick have been logged.

Although there are a mass of details not yet considered, you can see that the text

log is in essence a catenation of the command, request, and message events that occur

during a shim session.

3.4. SHIM STARTUP 31

Figure 3.11: Screen shot of history, news, account data and contract data queries

Figure 3.12: Screen shot of market and market depth data, ending with shim exit

32 CHAPTER 3. INSTALLATION, SETUP, AND STARTUP

3.4.3 Locate and View Output

3.5 The Shim Command Line

The command line for the shim consists of the program name itself, presumably shim,

and spelled out as ./shim, about which more later; the required mode, § 3.5.1; and

following the mode, a possibly empty list of options, § 3.5.2. The location of your

output (§ 3.5.3) is controlled in part by those options, and also by how and where you

run the shim, § 3.5.3.

3.5.1 Choosing the Mode

A command mode is required for normal operation. If you leave it off the command

line, you’ll get the mode message of Figure 3.13 to explain your available choices. I’ll

consider the real modes in this section, and the help mode in the next one, leaving aside

the test modes as of use only to developers.

Usage: shim <mode> [optional feature list]

Modes:

--help # print this explanation and list the optional features

real modes, requiring access to an IB tws:

--data # process subscriptions and log resulting tick stream events

--risk # accept full command set, send requests, and log all events

test modes, with no connection to the tws:

--play # read events from the image file and send text to stdout

--unit # for internal use; unstable though otherwise harmless

Figure 3.13: The mode message

For all productive use of the shim you’ll use either --data or --risk mode.

Data mode protects you from unintentional orders, since the commands used for

orders are not accepted by a shim running in that mode; it literally can not understand

them, and will treat such as a syntax error. Data mode has the virtues of its defect, since

denial-of-service issues that might be critically important as orders are transmitted be-

come much less troublesome when all that is at stake are market data subscriptions and

outstanding history queries. E.g., the bulk subscription command, load, which is con-

venient for rapidly changing from one set of subcriptions to another, is best suited to

data mode; even if you run up against your market data subscription limit by mistake,

you can compensate for lost access to a particular symbol by an ad hoc history query.

As mentioned previously, you can submit orders to the IB tws in risk mode, and this

is the only mode that accepts the commands to submit and cancel orders. All other com-

3.5. THE SHIM COMMAND LINE 33

mands are also supported in this mode, including the bulk subscription load command,

since you might need to monitor market conditions over some large, rapidly changing

set of symbols. You should be careful, however, to control the number of market data

subscriptions that you have in place at any one time, since IB limits you to at most

100 per account. This and other IB tws resource limitations are listed in Figure 3.14,

and each of these limits is enforced as well by the shim, to avoid disconnect-reconnect

delays.

Limit Resource

50 api requests per second

100 market data (tick) subscriptions, at any one time

3 market depth (level 2) subscriptions, ditto

6 history queries per minute

1 history queries in flight at any one time

Figure 3.14: Resource limits to the IB tws

The shim feeds requests to the IB tws at most once every 20 milliseconds, to avoid

breaking the api request rate limitation. It counts market data and market depth sub-

scriptions already submitted, and queues new ones up until the number of active sub-

scriptions has declined to allow the requests to be sent. Only one history query is sent

out at a time, and at most six of those will be submitted per minute. In each case over-

eager downstream commands that would surpass some rate or counted limit are simply

queued up until conditions allow later submission.

For market data, and in the absence of subscription cancellations, the resulting

delay is unbounded, so that careless use of the load command might easily block data

subscriptions for critical, position-related contracts. It is up to the user or programs that

control the shim — i.e., you — to make the resource allocation decisions for history

queries and market data subscriptions that are necessary to stay within the limitations

that IB has placed on their system. Otherwise, early requests will starve later ones.

3.5.2 Choosing Options

If you choose --help mode, i.e. with the command ./shim --help, then you’ll

see not only the text of Figure 3.13, but also, following it, the explanation of the com-

mand line options, as in Figure 3.15.

The first of these, the cmds option to --help mode, displays also a brief expla-

nation of the shim command set, about which more in Chapter 4. Of the other options,

most provide some kind of control over shim output. In particular, the file, cout,

and logd options select logging to a file, the standard out, or the system logger, re-

spectively. The file option is the default if none is given, and it is also enabled if the

pane option is used. The output options may be combined, so that if, for instance, you

want to send the event text to both a file, and also the system logger, feel free.

34 CHAPTER 3. INSTALLATION, SETUP, AND STARTUP

Options may be listed following the mode.

help mode only:

cmds # describe the syntax and semantics of the shim commands

real modes; the output options write all events to the:

file # file with name also the ShimText name-value pair value

cout # standard output -- warning, sprays all over the screen

logd # system logger, to provide routing via /etc/syslog.conf

output options may be combined and file is the default

other real mode options:

init # prompt for the dbms and link commands during startup

pane # pop a konsole windowpane to scroll cmds, reqs and msgs

load # load SubRequest at startup even without a load command

save # cmds-reqs-msgs image file partition for later playback

test mode only:

fast # cut startup time; this saves just one second, works with

Linux only, and is used primarily to speedup the offline

parts of the test suite

Figure 3.15: The help message for options

Two other real mode options affect message output. The pane option pops up a

kde konsole window, and scrolls the text of all the events there, as they are written to

the log file. The save option is used in debugging, and copies command, request, and

message data to the files cmdinput.txt, shim2tws.bin, and tws2shim.bin.

Of the remaining parameters, the init option triggers prompts for the connection

parameters, as already explained in § 3.2.3, and in particular Figure 3.7, while the

load option forces a read of the bulk subscriptions table at startup, so that market data

subscriptions may be sent to the IB tws as if via some batch job, without any command

input whatsoever.

3.5.3 Deciding Where to Run the Shim

3.6 Troubleshooting Connect Problems

Chapter 4

Using the Shim

This chapter introduces the reader to the shim command set, and documents the format

of the events that result. It includes both introductory sections for the new user as well

as detailed explanations and tables for the downstream script programmer.

Recall from Chapter 1 that shim and api protocol language statements are referred

to collectively as events, and these events are partitioned into the four categories of:

commands, from the downstream to the shim; requests, from the shim to the IB tws;

messages, from the tws to the shim; and comments, generated internally by the shim

and sent downstream. The command language is explained in § 4.1, while the related

requests and resulting messages, collectively api protocol events, are covered in § 4.2.

The new user will probably want to treat the command set as an introduction to the api

protocol, and read selectively in § 4.1, leaving the details of § 4.2 for later, while the

downstream programmer should expect to cover all of § 4.1 and § 4.2.

4.1 The trading-shim Command Set

Commands consist of: an initial verb; the parameters, if any; a terminating semicolon;

and finally a newline. They may be usefully divided between those that control the

shim, § 4.1.1, and trigger api requests, § 4.1.2.

Recall from § 3.5.2 that --help mode supports the cmds option, which adds a

brief explanation of the shim command set to the initial description of the modes and

options. That text is recapped in Figures 4.1 and 4.2.

4.1.1 Commands to Control the Shim

• initialization

35

36 CHAPTER 4. USING THE SHIM

Command function -- a brief guide:

help Display the text you are reading now

ping Check connectivity between downstream and the shim

next " " " the shim and the tws

read Add newly inserted entries of the database to the shim

load Load the SubRequest table, adding and deleting subscriptions

list List current subscriptions

wait Add an n-second bubble to the shim’s request queue

wake Clear the bubble counter, restarting " "

quit Terminate the shim (after waiting on bubble, if any)

verb Set the tws log level

news Subscribe and unsubscribe to news bulletins

open Query for open orders

acct " " the (label, value, currency, account) tuple list

data " " contract data

tick Subscribe and unsubscribe to market data

book " to market depth (cancel currently broken)

past Query for historical data (cancel not yet implemented)

wire Create, modify, submit or cancel an order

cash Exercise an option

The following command verbs are synonyms:

acct and account

past " history

wire " order

cash " exercise

Note that the load and individual subscription commands overlap in

functionality, and that it is safest for now to use one or the other type,

but not both, within a session. That is, if you use load, consider avoiding

tick, book, and past, and vice versa.

Figure 4.1: The Command Function Help Text

4.1. THE TRADING-SHIM COMMAND SET 37

Command notation -- a brief guide:

Commands begin with the command verb, followed by the parameters, if any,

and terminated -- always -- by a semicolon.

The simplest command verbs have no parameters:

help next list wake

open read load done

The following command verbs allow whitespace and arbitrary comment text

to follow up to the terminating semicolon -- don’t forget it!

ping quit

The parameter syntax for most of the remaining commands is minimal:

wait N;

verb Level;

data Cid;

tick Req Cid I;

book Req Cid I;

past Req Cid I;

cash Act Cid Q Force;

N : the number of seconds

Q : " quantity

Cid : " contract id, a database uid attribute value of Contract

I : " configuration id, a database table uid, one of, by verb:

tick: TickConfig

book: DepthLimit

past: PastFilter

Level: one of (System, Error, Warning, Info, Detail)

Req : " " (add, del)

Act : " " (exercise, lapse)

The order command, due to the number of api parameters, is more complicated.

Much of the complexity is hidden in the LineItem record, but modifiable

parameters must be provided on the command line.

wire(Oid,Type,Op,Q,P,Aux,T);

Oid : the line item id, a database uid attribute value of LineItem

Type: an order type, e.g., MKT, LMT, STP, or TRAIL

Op : one of (Create, Submit, Modify, Cancel)

Q : the quantity

P : " limit price

Aux : " auxiliary price

T : " timeout (just a dummy for now, not yet used)

For examples, and in any case if this crib sheet is not sufficient,

see the regression tests, in particular the program text of bin/includes.

Note that the execution report, market scanner, option modelling, and all

financial advisor related requests and messages are not yet supported.

Please subscribe to the mailing list and let us know if you need these

features, see:

http://www.trading-shim.org/mailman/listinfo

Figure 4.2: The Command Notation Help Text

38 CHAPTER 4. USING THE SHIM

• runtime

– control

– database

4.1.2 Commands that Trigger Requests

• api protocol

– risk

– data

∗ ad hoc

∗ itemized

4.2 IB tws api Protocol Events

4.2.1 Requests to the IB tws

4.2.2 Messages from the IB tws

The sample client sources provide the best available guide to the requests and mes-

sages that make up the language of api events. The files of particular interest are

EClientSocket.java for requests, and EReader.java for messages, both in

the directory path IBJts/java/com/ib/client once the sources have been un-

packed. The IB tws api documentation has also been useful, especially in determining

the domain values for the various event attributes; start at IB’s main page, pull down

SOFTWARE, and drill down through FIX/API to one of the API topics, in particular

User’s Guide, Beta Notes, or Release Notes.

Under the IB tws api protocol, both requests and messages begin with a numeric

code, and consist of null-terminated strings.

4.2.3 Requests

The initial codes for the IB tws api request events are listed in Table 4.1.

http://www.interactivebrokers.com/en/main.php

4.2. IB TWS API PROTOCOL EVENTS 39

Tag Description Class name

1 request market data ReqMktData

2 cancel market data EndMktData

3 place order PlaceOrder

4 cancel order CancelOrder

5 request open orders OpenOrders

6 request account data AccountData

7 request executions Executions

8 request next id RequestIds

9 request contract data ReqConData

10 request market depth ReqMktBook

11 cancel market depth EndMktBook

12 request news bulletins ReqBulletin

13 cancel news bulletins EndBulletin

14 set IB tws log level SetLogLevel

15 request auto open orders AutoOpens

16 request all open orders AllOpens

17 request managed accounts ManagedAccts

18 request financial advisors FinAdvisor

19 replace financial advisor ReplaceFa

20 request historical data ReqHistory

21 exercise options ExerciseOpts

22 request market scan ReqScanSub

23 cancel market scan EndScanSub

24 request scan parameters ReqScanParms

25 cancel historical data EndHistory

Table 4.1: IB tws api request names and codes

Table 4.2: IB tws api message names and codes

40 CHAPTER 4. USING THE SHIM

4.2.4 Messages

4.3 The Downstream Text Protocols

Downstream programs talk to the shim via a simple verb-operand command language,

§ 4.3.1, while the text format used for shim output works to encapsulate all the various

event types, § 4.3.2.

4.3.1 The Command Language

4.3.2 The Shim Output Format

Since the shim output language is large, with 80 event types currently defined, it is

structured to simplify message selection by the downstream, with events having a com-

mon prefix, including numeric event codes suitable for switching. Following the prefix,

the rest of the event text is next echoed with near literal precision, after which selected

message types have appended context.

The Output Prefix

The output prefix is that initial portion of each output record that has the same structure

as every other, and consists of six fields. The first three are generated by the shim,

possibly with help from the system logger, but without reference to the event type. The

last three, the src-tag-ver triple, are event specific; in the case of requests and

messages, the tag and ver are defined by the IB tws api.

Table 4.3 gives an example of the output prefix as captured by the system logger; the

text of the table differs from that actually logged in that the vertical bars that originally

separated the fields are here indicated by column rules, and a heading has been added

for clarity.

There are actually two forms of output prefix, as the shim performs IO directly

to a file descriptor, or this task is delegated to the system logger via the syslog()

standard library call, in which case that procedure prepends additional text. Here the

prepended text consists of the date, formatted time, hostname, and following colon.

Note that although the textual value of the initial field differs, the number of columns

in the table, and number of fields that would be counted by splitting on vertical bars,

remains the same.

Considering the leftmost three fields, the process id, here 27865, can be used to

group log records by session. The seconds since midnight and µsecs values (see § 8.6,

§ 9.2.1, and § C.2.3) are primarily of use in benchmarking performance, although they

in addition provide a unique key for the events of that day. Given 37674 seconds since

4.3. THE DOWNSTREAM TEXT PROTOCOLS 41

prepended log text and process id seconds µ secs src tag ver

May 8 10:27:54 pippin : 27865 37674 1010583 4 100 5

May 8 10:27:54 pippin : 27865 37674 1010590 4 100 5

May 8 10:27:54 pippin : 27865 37674 1010598 4 100 5

May 8 10:27:54 pippin : 27865 37674 1010643 3 9 1

May 8 10:27:54 pippin : 27865 37674 1343459 3 4 2

May 8 10:27:54 pippin : 27865 37674 1343500 2 2 0

May 8 10:27:54 pippin : 27865 37674 1343515 2 7 0

Table 4.3: Examples of the output format prefix

midnight and noting that 37674 = 60×(60×10+27)+54, we confirm that the session

occurred at 10:27:54 am. Although duplicative here, direct output to a file would lack

the logger prepend, so that the seconds field is not in general redundant.

The three rightmost fields are probably more widely used than the first three, since

together they map one-to-one to the event type, so that they enable event type switch-

ing, about which more in the next section.

Message Switching

The src code partitions the events into categories such as command, request, message,

or comment; the tag matches according to event; and, for events originally occurring

on the upstream side of the shim, the ver code corresponds to the IB tws api request or

message version. A common idiom for downstream scripts splits output text on vertical

bars, and then switches on the source and tag codes.

Since the tag and ver values for requests and messages are defined by the IB tws

api, their values are found back in Tables 4.1 and ??. The request and message tags are

every bit as stable in the design for the shim as for the IB tws api, so hardwiring them

into downstream scripts is probably reasonable.

The command and comment codes, on the other hand, are specific to the shim, and

have changed a number of times over the course of development. For this reason, I

recommend that downstream developers match directly on the command verb text if

they need to switch on command types, Table ??. The internally generated events are

the least stable part of the event design ??, and so are not covered here yet.

The Encapsulated Body

For flat events, the attributes in the body of a log format record map one-to-one to

the fields of the related command, request, message, or comment. History queries are

flattened, so that the header has a distinct log record, and the detail lines follow im-

mediately, one to a line. In some cases data is white-space formatted to aid column

42 CHAPTER 4. USING THE SHIM

alignment, and the dynamically chosen tick and order ids are mapped back to the re-

lated contract or order lineitem index key. Otherwise, request and message event data

is printed exactly as the characters appear on the network socket.

Chapter 5

Adding Info to the Database

Currently, the only section in this chapter, below, is a mailing list post for a question

that has come up a number of times now, of how people in Europe can add new symbols

and contracts to the database. In what follows, mixedcase names are database tables,

and paths are relative to the directory sql of an unpacked tarball. The post is motivated

with a rhetorical question:

Where is the symbol and contract data, and how does it get there?

5.1 Adding Symbols and Contracts to the Database

In [very] brief, there are three primary source tables that are loaded, and these are then

used to populate the table Underlying. Then the table Symbol is loaded, first from

Underlying, and second from ProductMap. Finally Symbol is filtered by LocalMap

into Contract to give the set of contracts.

The contracts are the entities that can be subscribed to for current market data,

queried for history data, and in some cases bought and sold.

5.1.1 Data for the table Underlying

In reading the load.sql script, focusing on the primary symbol data, and working back-

wards from goal to means, note, 1st, the insert statements in load.sql that populate the

Underlying table; 2nd, the table names those insert statements select from, and 3rd,

the data sources that are src’d by load.sql in order to populate the three primary source

tables.

43

44 CHAPTER 5. ADDING INFO TO THE DATABASE

In brief, Underlying is populated from Currency, Miscellany, and Stock, and those

src’d from req/Currency.sql, mod/Miscellany.sql, and mod/Stock.sql. At this point Un-

derlying is filled with type, home, name, and description quadruples (see syms.sql for

the create table statement for Underlying). Looking at the values for the src’d tables,

Underlying can be seen to be a union of security, more precisely, product, tuples, la-

belled by type of security.

5.1.2 Data for the table Symbol

Once given the contents of Underlying, inserts in the load.sql script fill Symbol from

Underlying and ProductMap, respectively.

Underlying fills Symbol

Script load.sql first copies from Underlying to Symbol, giving us an initial set of sym-

bols. Keep in mind that a symbol is an abstraction, not just a string like SUNW, or

JAVA. Those are names, and a symbol has in addition a type, e.g., stock or future; and

a home, since different exchanges may use the same name for different symbols, that

is underlying products.

Although Symbol now has an initial population originally derived from: the pri-

mary currencies supported by IB, USD, AUD, CAD, CHF, EUR, GBP, HKD, JPY,

MXN, and SEK; miscellaneous index, commodity, and paper names from Miscellany;

and the stocks from, you guessed it, Stock, currently mostly NYSE and NASDAQ,

and some AMEX — still, there are any number of possible derived products not yet in

symbol. In particular, for the entries in Miscellany, we may want to use the same name

for related indices, futures, and options.

ProductMap adds to Symbol

The values in the three primary source tables are treated as base case values, and the

ProductMap table allows us to multiply them into new Symbol tuples as desired. Note

from the create table statements in syms.sql that Underlying and Symbol have nearly

the same structure, being in essence type-exchange-name triples. Each product map-

ping gives directions for creating a new, derived symbol triple from an underlying, and

incidently stands for the derivative relationship between the two, since that is not di-

rectly visible except by matching on the long name comment attributes, a tedious and

fragile business at best.

5.1. ADDING SYMBOLS AND CONTRACTS TO THE DATABASE 45

5.1.3 Data for the table Contract

Recall that the table LocalSet controls how contracts are created from symbols. Note

that as delivered, the load script for the database results in, as this is written, more than

5000 symbols, but less than 200 LocalSet tuples and contracts. This indicates one of the

reasons for LocalSet, to eliminate uninteresting symbols from contract consideration;

another is to provide the additional information needed to fully define contracts.

The role of LocalSet

The entries in LocalSet consist of key values related to key indices in Symbol, and

three additional attributes, the key values for route, unit of currency, and variant part

tag index.

The first two are straight-forward, and have already been encountered in a different

context, as symbol home exchanges, and currencies to be traded. Here the route refers

to the floor or ECN where the trade is to take place or cross, while the currency is used

as a unit of denomination.

The tag index varies in interpretation with the security type, and as it implies addi-

tional variant part data such as expiry and right. For stocks and indices, where there is

no variant part, the tag is always zero, while for futures and options it stands for a tuple

index into either of the tables FutDetail and OptDetail.

Adding new contracts

The proper way to add contracts to the Contract table is by adding new data to the

source and intermediate load files from which it was originally defined, and reload-

ing the database by running the create.sql script. Note that for production use, you

will want to first unload history data records and order journal entries in order to save

them, since in reloading the database tables are first dropped, then recreated, and finally

reloaded. In what follows, when I speak of adding an entry to a table, I mean that an

entry is added to the load file, so that the changes you make will persist the next time

you recreate the database.

In brief, the preferred way to add a new contract to the Contract table is to add

an entry to the LocalSet load file mod/LocalSet.sql, add supporting entries as needed

to primary and intermediate load files used to populate Symbol, and then recreate the

database.

In the worst case, for a new Underlying not yet appearing in the database, you

will have to add to one of Currency, Miscellany, or Stock, then, if deriving from that,

to ProductMap, and in any case, add to LocalSet. If the underlying already exists,

but some derivative of interest does not, then you need add to only ProductMap and

46 CHAPTER 5. ADDING INFO TO THE DATABASE

LocalSet; and if the security of interest occurs in Symbol, you only need select it by

adding to LocalSet.

To summarize, in order to add a new contract, add a new LocalSet load file entry,

and add as well supporting entries as needed to meet foreign key constraints, to the

source load files req/Currency.sql, mod/Miscellany.sql, mod/Stock.sql, and

mod/ProductMap.sql; and then, from the directory sql, and in the mysql interpreter,

source the create.sql script.

The table LocalSet, although used by the load script, is never referred to by the

shim, and you are free to add or delete entries up to the point the database is used for

production, after which existing entries must not be deleted, and adds should be at the

end.

Part II

Reference

47

Chapter 6

Languages and IO

One of the primary requirements for the shim is that it shield the downstream from the

binary IB tws protocol by converting that format to a convenient textual form. There

are then at least two protocol languages that the shim must speak, binary for upstream

and text for downstream.

Once given a textual language with which to express events, they must be copied

somewhere to be of use, and so there are several channels to which the shim can echo

events, though one in particular is always primary, currently either a text file in the

current directory, or else the system logger.

The format of requests and messages is described in § 6.1; that of commands and

the output stream in § 4.3; and the names and other attributes of the output channels to

which the output stream can be directed, in § 6.2.

6.1 The Binary Upstream Protocols

The IB tws socket api works over a TCP/IP socket, so that bytes are delivered reliably

and in order as long as the socket is working. Since, however, the tws is threaded, and

talks to multiple upstream servers, the messages delivered over TCP are themselves

delivered non-deterministically, that is with uncertain order.

Note that here as with other aspects of the IB tws api, there is no formal specifi-

cation, and the IB tws does not itself have freely available sources, so that all of this

section must necessarily be tentative. Note also that the IB tws api is currently under

active development, so that the material here is very much subject to change, whether

by the replacement of existing events with new versions, or the addition of new request

and message types entirely.

49

50 CHAPTER 6. LANGUAGES AND IO

The rest of this section will focus on: the interpretation of bytes read from the TCP

socket, § 6.1.1; common features of the IB tws binary protocols, § 6.1.2; the initial

handshake, § 6.1.3; api requests to the tws, § ??; and api messages from the tws, § ??.

6.1.1 Portability and the Tranfer Encoding

The shim has been designed to work with UTF-8 or other byte-oriented tranfer encod-

ings, and database setup uses UTF-8 as the default table encoding. Use of the shim with

systems having larger transfer encoding unit sizes is not supported, and this includes in

particular connection to an api server running in a UTF-16 environment.

The database table load files in the distribution use only the ASCII subset of UTF-

8, and in our environment the IB tws api server likewise confines itself to ASCII. Given

those limitations, platforms with other byte-oriented transfer encodings have been used

to host the IB tws, see e.g., Table 6.1.

os locale language file encoding default bits

Linux en US en UTF-8 UTF-8 8

Windows 2000 a en US en Cp1252 Cp1252 8

Mac OS X en US en MacRoman MacRoman 8

Table 6.1: Examples of java locale and default encoding parameters

aWe use Windows for one legacy application only, and so the locally available Windows box is quite

antiquated.

The shim uses a table-driven scanner to tokenize input, and its character classifica-

tion tables are designed to work with bytes, with bytes outside the 7-bit ASCII range

treated as alphabetic. Beyond this, the shim merely passes bytes around, so that the

interpretation given to those bytes by the downstream applications or the IB tws is

outside its control.

Although the shim has been observed to successfully connect to, make requests of,

and parse the messages of IB tws api servers on platforms with a byte-oriented Java

transfer encoding other than UTF-8, e.g., Cp1252 or MacRoman, such operation is the

sole responsibility of the user. Such encodings have ASCII as a common subset with

UTF-8, and their apparent interoperability is an artifact of the restriction in practice of

symbol and other character text data to the ASCII subset.

6.1.2 Common Features

There is no record separator or terminator for either requests or messages, so that re-

covering from parse errors is nontrivial. The IB tws depends on a correct parse of the

previous request to determine the record boundary, and such requests must therefor be

correct in type and number. The shim, in contrast, includes logic to resynchronize the

6.2. THE SHIM OUTPUT CHANNELS 51

parser by discarding fields one at a time until a successful record match occurs. There

is good reason why the tws and shim handle the problem of parse errors so differently,

as safety dictates that the tws reject uncertain requests, to avoid malformed or incom-

plete orders, and that the shim seek to extract every last ounce of information from the

event stream, in order to keep the downstream informed.

As a rule, parse errors do not occur with the upstream protocol languages except

temporarily, after version updates. Although table driven design has been used to limit

the effort required, the shim must sometimes be modified when the IB tws api version

changes. In addition, on one occasion a (now obsolete and unavailable) release of tws

was observed to garble messages, although a replacement release was available the

same day we observed the problem.

Once stable operation has been achieved, however, I never see parse errors for

supported request and message types. It is nevertheless the responsibility of the down-

stream client to watch the message stream and note the various error messages that

might indicate that a parse error has occurred. Note that § ?? and § ?? following, in

addition to describing the api request and message types, also indicate ?? that subset

currently supported by the shim.

6.1.3 The Client – IB tws Handshake

The IB tws supports multiple versions of the api protocol, and it decides which one to

speak based on the initial handshake from the client.

The handshake has two steps, one message each from the downstream client and

the IB tws server. The client sends the api version it intends to speak, and the server

sends back the current and maximum protocol version it supports, followed by, after

version 20 and more recent, the connection time string.

6.2 The Shim Output Channels

6.2.1 File Writes

6.2.2 Database Posts

52 CHAPTER 6. LANGUAGES AND IO

Chapter 7

The Database Architecture

53

54 CHAPTER 7. THE DATABASE ARCHITECTURE

Chapter 8

Patterns, Tables, and Classes

8.1 Significant Design Patterns Used in the Shim

[32]

8.1.1 Binding Patterns

8.1.2 The Singletree

8.1.3 Type Symbols

8.1.4 Factories, Accumulators, and Wrappers

See Figure 8.1

These objects may be allocated on the stack at will, and are meant for parameter

passing only. They should never occur as a data member except as part of another

temporary. The suffix a to the reference short name, here meaning auto, is meant to

remind the programmer of this.

In most cases, to provide transparency, the ctor arguments are one-to-one with the

data members, and to allow convenient allocation in expressions, there are no non-

const member functions beyond the constructor. In short, as the file and class name

indicates, they’re just wrappers.

55

56 CHAPTER 8. PATTERNS, TABLES, AND CLASSES

ObjState

ViewFinder Dbms Loader Atoms Terms

Tables

Parser

Clock

Pool

Cons

Types

Codes

Rules

Scanner Reader

Figure 8.1: Factory wrappers

8.2 The Shim Database

See Figure 8.2 for the foreign key dependency graph of the tables in the shim database.

8.2.1 Database and Other Scripts

Once given a database (??), the shim database tables are created and loaded with initial

data values by running the create.sql script, described in § 8.2.1.

Database and Table Creation

Tables naturally group into the three categories of security, subscription, and order

transactions, with tables from the latter two categories having foreign key constraints

depending on security-related tables.

In order to create or recreate the dbms, tables are first dropped in top-down order

by foreign key dependency, the reverse order of creation. Then create table statements

for securities, subscriptions, and orders are source’d in creation order, that is bottom-

up by key dependency. (The GraphViz dot program and the dbms-related dot files in

../dot may be used to generate foreign key dependency graphs). Table loads are finally

performed via a mixture of literal and source’d insert statements, the load files for the

latter case named according to the table name, e.g., for a given table TabName, the load

file if it exists is named TabName.sql, and found in one of the directories req or mod

(table load files in opt are not used here).

8.2. THE SHIM DATABASE 57

Static Source

SymbolExpire Currency

Locality

Exchange

FutSrc

Future

Static

ExchangeSymbol

Future

Expire

Option

Locality

Currency

Product

Contract

ChangeOrder

58 CHAPTER 8. PATTERNS, TABLES, AND CLASSES

To populate an empty dbms and load initial data, run this script once from the

mysql interpreter to create and load tables, and then rerun a second time to ensure that

a fix-point has been reached, that is to check that all tables are conditionally dropped

before creation.

Since recreating the dbms tables also loads tables with symbols, contracts, and

orders, this script is one means by which to add new tuples for dbms relations that

provide input to the shim; edit the ¡table-name¿.sql insert statement in the appropriate

load file, halt all instances of the shim that might read the dbms, and rerun this script.

Realize that all history and state information stored in the dbms will be lost, unless it

is first extracted via mysqldump, added to load files, and source’d as necessary.

All persistent tables have the engine type InnoDb, to provide foreign key depen-

dency checking. This engine type *must not* be changed to some other type, e.g.,

MyISAM, else the shim die due to subscript-out-of-range errors.

For the Contract and SubRequest tables, the SecType and SubType attributes, re-

spectively, tag an otherwise untyped numerical index, the actual type of which is a

union of foreign key types, even though not explicitly declareable as such. Since the

derived type data members for some objects in the shim are defined via these tagged

variants, the underlying tables must be loaded with the related values, else there be an

index-out-of-range error, so that for the Contract and SubRequest relations, in addi-

tion to the explicitly declared foreign key dependencies, there are also these implicit

dependency constraints on the underlying Detail or Filter tables.

source drop.sql;

source enum.sql;

source base.sql;

source secs.sql;

source subs.sql;

source xact.sql;

source load.sql;

source risk.sql;

Figure 8.3: Commands from the create.sql script

Table Updates

8.3 The Type System

The type symbols are used to label application domain objects: all events, database

table records, and database table attributes have related predicate, function, and con-

stant type symbols, respectively, with which the term instances are labelled. The type

symbols provide operations to parse input text, construct events and tuples, lookup

8.3. THE TYPE SYSTEM 59

constants, and specialize — downcast — terms to the constituent atom or finite domain

symbol when such exists. The type hierarchy is enormous, and so I’ll introduce it in

stages, starting from the root, and considering alternatives.

8.3.1 The Fundamental Three-Way Partition for Types

There are a number of ways to classify the type symbols. Most basically, it should be

possible to partition the Type class according to the predicate, function, and constant

object categories mentioned above, as shown by the top portion of a possible type class

derivation hierarchy in Figure 8.4.

Type

Predicate Functor Constant

Figure 8.4: A hypothetical type derivation hierarchy

8.3.2 Multiple Inheritance in the Type System

In addition, the three basic kinds of symbol may be usefully grouped in two different

ways, as we focus on where the related terms occur, and how they are constructed; the

first categorization asks whether term trees are roots or not, and the second, whether

they are leaves or not. Of these partitions, the first distinguishes top level terms from

data, and the second, compound terms from constants.

The use of multiple inheritance, see Figure 8.5, allows the inheritance hierarchy to

express both cases: a type is a label for either a predicate, top-level term, or else for an

argument of another term; and in addition a type denotes either a compound term, or a

constant.

Functor Constant

Type

Level Data

Argument

Predicate

Compound

Figure 8.5: The top of the type symbol hierarchy

60 CHAPTER 8. PATTERNS, TABLES, AND CLASSES

The derived classes of Level, Predicate and Argument, together partition the types

in accord with the fact that a top level term is labelled with a Predicate symbol, while

Function and Constant symbols may be arguments to a term; and similarly, the chil-

dren of Data, Compound and Constant, again partition the types as a term has internal

structure or not.

8.3.3 Input Matching

Type symbols are used to implement the parse algorithm. The Type base class provides

a virtual function match(), and rule definitions are found for the start symbols, cur-

rently the only disjunctive stage in parsing; compound terms, where the rule text loops

over the argument types of the schema, matching recursively for each; and for the base

case, the terminal or Constant types.

8.3.4 The Full Hierarchy

In Figure 8.6, the full derivation hierarchy of the type classes, the shaded rectangular

nodes represent class templates, and the numbers in parentheses following the template

name, the number of instances defined via typedefs.

8.3.5 Application Finite Domain Dual Types

Given a type with dual index domains, in particular sequential numbers and character

strings, and where we wish to lookup using either domain, so that there are two useful

values for id(), the sequence and hash numbers, the Dual class template provides a

cyclical wrapping that:

• conserves type information, so the original type can be recovered; and

• redefines the operator¡() relation to the identifier hash code, so that the wrapper

sorts in hash order, and supports indexed lookup via the label text.

Note that the template type T must have a data member named ’name’ itself having

member function id(). The type T is typically an identifier or string.

Although the finite domains are the common case of dual types, the Dual template

is also used for the Relation class.

8.3. THE TYPE SYSTEM 61

T
y
p
e

m
at

ch
:0

B
as

e

A
rg

u
m

en
t

M
et

a

m
at

ch
()

M
ap

2
In

p
u
tT

ag
C

o
m

p
o
u
n
d

m
at

ch
()

P
re

d
ic

at
e

F
u
n
ct

o
r

C
o
n
st

an
t

m
at

ch
()

o
b
ta

in
:0

M
ap

p
in

g
M

es
sa

g
e

R
eq

u
es

t
C

o
m

m
an

d

C
o
m

m
en

t
N

o
n
te

rm

m
at

ch
()

A
rr

ay
C

la
ss

S
q
lR

ea
d

S
q
lP

o
st

S
im

p
le

L
o
o
k

u
p

S
tr

(6
0
)

N
u
m

b
er

D
ec

(2
8
)

In
te

g
ra

l

F
k
ey

(3
)

E
rr

I

N
at

(2
3
)

In
t(

2
)

T
ab

s(
4
0
)

o
b
ta

in
()

P
k
ey

(1
0
)

P
re

d
(4

2
)

P
sy

m
(4

0
)

A
p
iE

(2
0
)

P
er

m
(4

)

F
sy

m
(3

4
)

P
ai

r(
6
)

S
p
ar

se
(1

)

S
el

ec
to

r
X

p
S

u
ff

ix

M
ap

T
R

p
tG

ro
u
p

P
o
st

M
sg

P
la

in
In

it
ia

l

S
h
im

C
m

d
S

en
d
C

m
d

D
et

ai
l

E
rr

o
r

P
ri

n
t

O
p
er

at
o
r

L
ab

el
P

ar
am

T
u
p
le

E
n
u
m

T
ag

F
la

t
N

es
t

P
re

fi
x

B
in

ar
y

S
ca

la
r

F
o
rm

at
A

d
d
re

ss

In
d
ex

K
ey

ed
L

o
g
ic

Figure 8.6: The type hierarchy

62 CHAPTER 8. PATTERNS, TABLES, AND CLASSES

8.4 Atoms: the Routeable Objects

See Figures 8.7 and 8.8 for the derivation hierarchies for the object and term hierar-

chies.

Atom

Wrapper Event

MessageRequest

Data

Constant Compound

FdSymbol Simple

String Number

Decimal Integral

Integer Natural

Functor

Array Product

Comment Outside

UpEvent

Command

Child Indexed

IdTuple DbTuple

Figure 8.7: Objects

ast::Term obj::Data Constant Compound obj::Object

Figure 8.8: Terms

8.4.1 Database Tuples

See Figure 8.9

See Figure 8.10

8.4. ATOMS: THE ROUTEABLE OBJECTS 63

TupleTable

LocalState Persistent

SeqNumMap FinitePair Sequential

SdbVersion SessionSet(20) Historical(6)

SequentialT

FinitePair(6)

VectorData(22)KeyedTable(4)

Figure 8.9: Relational tables

8.4.2 The Event Hierarchy

Commands

See Figure 8.11 for the derivation hierarchy of the Command events.

Requests

See Figure 8.12 for the derivation hierarchy of the Request events.

Messages

See Figure 8.13 for the derivation hierarchy of the Message events.

See Figure 8.14 for the derivation hierarchy for error message type codes.

Comments

Other Atoms

See Figure 8.15

See Figure 8.16

64 CHAPTER 8. PATTERNS, TABLES, AND CLASSES

DbTuple Imperative

SessionSet

Historical

KeyedValue

IndexedVal

AccountCode

Transaction

Locality

Currency

Exchange

Symbol

Contract

Abstract

Expire

DataFilter

Product

Static

Expiry

HistoryTag

SubsConfig

Future

Option

TickConfig

DepthLimit

PastFilter

ScanFilter

RiskRequest

RiskMessage

OrderDetail

OrderRecord

OrderStatus

ActiveOrder

OrderReport

OrderResult

Template

Protocol

OrderFlags

CreateEvent

ChangeOrder

Child

PostStat

PostOpen

PostPort

PostExec

Figure 8.10: Records

8.4. ATOMS: THE ROUTEABLE OBJECTS 65

InitOpt

Feed

Dbms

Runtime

Process

Program

Session(8) SetVerb

PerTick(7)

OldItem(2)NewItem(2)

Command

Tabs

Echo

Sync

Send

Read

Bind

Ping

Help

Quit

Wake

Null

Wait

Exit

Context

NewTick

Risk

Stop

Cash

SymExch

NewLine

SelInfo

SubLine

SelTick

SelBook

SelBars

SelScan

SelPast

More

Line

Text

Figure 8.11: Commands

66 CHAPTER 8. PATTERNS, TABLES, AND CLASSES

Request

Transactional

DataSource

VariousReq

ProcessOrder

ExerciseOpts

PlaceOrder

CancelOrder

PerContract

ScannerSub

Subscript

History

MktData

MktBook

HistorySub

ReqMktData

EndMktData

ReqMktBook

EndMktBook

HistoryReq

EndHistory

ReqScanSub

EndScanSub

CreateOrder

ModifyOrder

ReqBarsSub

EndBarsSub

Figure 8.12: Requests

See Figure 8.17

8.5 IO Stream Objects

See Figure 8.18 for the derivation hierarchy of the Stream classes.

See Figure 8.19 for the derivation hierarchy for IO channel abstraction.

See Figure 8.20

8.5. IO STREAM OBJECTS 67

Message

Handshake

Tick

History

ProdMsg

Rest

TickData

Change

Parent

Price

Quant

Depth

Depth2

ScanParms

ScanData

RealTimeContract

BondData

PostMsg

Error

KeyValue

UpdateTime

NextId

Bulletin

Swallow

Status

Open

Execution

Portfolio

Accounts

Advisor

Figure 8.13: Messages

68 CHAPTER 8. PATTERNS, TABLES, AND CLASSES

ApiCode

ApiAppErrCode

OverloadedMsg

ApiSysMsgCode

sec_not_found

tid_not_found

unable_format

error_val_req

duplicate_tid

AppErrCode322

reach_max_sub

dup_client_id

AppErrCode162

query_no_data

socket_broken

tws_exit_open

his_cancelled

AppMsgCode165

connection_ok

sv_disconnect

connect_retry

upstream_lost

upstream_good

mkt_data_lost

mkt_data_good

his_data_good

farm_inactive

Figure 8.14: Error messages

Warning

PlainTextMsg Substitution

SingletonArg ArgumentPair

NestedTickId NestedString RequestError StringTickId StringString

Figure 8.15: Warnings

8.5. IO STREAM OBJECTS 69

Wrapper

History

Figure 8.16: Augmented atoms

Child

Sibling

History Scanner

Figure 8.17: Sibling atoms

Stream

Source Output

Loader Intake

Listener IbWire

Target Logger

Sender Poster

Figure 8.18: Stream variants

Figure 8.19: IO channel abstraction

70 CHAPTER 8. PATTERNS, TABLES, AND CLASSES

TaskFlow

Mapper Stream

Aggregator Source Target

Loader Intake

Listener Reader

Logger Output

Sender Poster

Figure 8.20: Mapper hierarchy

8.6 Time-related State

• the multiple time scales

– clock ticks – seconds

– request sends, and IO timeouts – 20 milleseconds

– log data time stamps – microseconds

– the processor clock, presumably nanoseconds or better

• the processor time stamp counter

8.6.1 The TimeStamp

8.6.2 The Clock

The Clock interface provides access by its parent and friend, the Timer, and via two

public methods, clock time(), and clock usec, see Figure 8.21.

The private check time() method uses the localtime() system call to de-

termine the externally maintained time, in order to see if another second has elapsed

since the last call, and, if so, updates the time data member, returning true if an update

occurred, and false otherwise.

8.6. TIME-RELATED STATE 71

friend/method explanation

Timer singleton parent checks for clock ticks due to periodic IO timeouts

clock time() return saved seconds since midnight, update is triggered via Timer

clock usec() microseconds since the last clock tick, from time stamp counter

check time() synchronize saved time with local time, and return true if lagging

now() determine the local time via an operating system call

Figure 8.21: Interface and private methods of the Clock

The Timer must check the Clock sufficiently often to obtain each clock tick, since

the check time() method indicates only the presence or absence of a clock tick, not

the number that have occurred.

The TimeStamp constructor is the only client to use the clock usec method.

Clients using the clock time method include TimeStamp, Timer, Tasks, and various

agents such as the Historian.

8.6.3 The Timer

8.6.4 The Scheduler

8.6.5 The Task Set

72 CHAPTER 8. PATTERNS, TABLES, AND CLASSES

Chapter 9

Stages of Computation

Program process stages are suggested by the root of the program call graph, Figure 9.1,

with computation beginning with the construction of singletons in main() via static

member functions and followed by a member function call of the Shim singletree; for

the common case, a run loop that waits for input and processes events; and either, given

normal termination, close of the upstream connections prior to successful program exit,

or otherwise, exit with abnormal return code.

main SingleTree::root

BootMemory::boot

Shim::run_choice Shim::operations

Shim::top_exit

IoFlow::run

Timer::wait

Timer::task

Inputs::run

Router::run

Outputs::run

Upstream::close

Figure 9.1: Tip of shim call graph

9.1 Initialization Via Construction of the Singletree

There are many advantages to including all singletons within a single root object, the

singletree, not least of which is that the constructor call graph controls the order of

73

74 CHAPTER 9. STAGES OF COMPUTATION

initialization. Under the more widely used approach of static variables, singletons are

bound via multiple definitions scattered over multiple files, and there is no straight for-

ward approach to controlling, or even knowing, the sequence of singleton construction.

Applying the singletree pattern eliminates the global, class, and local static variables

that infest most programs, and allows the designer to restrict access to global state.

For a system such as the shim where the sources follow this singletree pattern,

there is a singleton inclusion hierarchy, Figure 9.2, and related constructor call graph

that correspond closely to the stages of program initialization. For the shim, the overall

construction of the Shim object breaks down into five steps, first the four construc-

tor calls of: the components singleton, § C.1.1; program constants, § 9.1.1; IoFlow

object, § 9.1.2; and Router object, § 9.1.3; followed by initialization procedures,

IoFlow::init() and Router::init(), § 9.1.4, called from the Shim con-

structor itself.

Projection

Shim

Components

Constants

IoFlow

Router

err msg

PseudoTerm

Memory

Tables

Dbms

Loader

Parser

Inputs

Scheduler

Agents

Timer

TermsAtoms

ObjState

Clock

Tokens

Figure 9.2: The upper nodes of the graph of singletons (unshaded), and related wrapper

and factory classes (shaded). Edges flow generally from left to right. The IoFlow and

Router objects are the primary application domain data members of the Shim object.

9.1. INITIALIZATION VIA CONSTRUCTION OF THE SINGLETREE 75

9.1.1 one::Constants

9.1.2 iof::IoFlow

9.1.3 one::Router

Readers send input events to the router, which distributes them, as needed, to its agents

before sending them to the various output channels. Table 9.1 gives the mapping from

each agent to the request and message class types for which it bears responsbility,

though in many cases no analysis is currently performed, with the router acting only as

a multiplexer to relay events to the downstream receivers. The two agents Runner and

Bookkeeper are closely coupled in function, as suggested by the lack and multiplic-

ity of message types for the first and second, respectively, and the implementation of

these two agents is in particular likely to change significantly in the future. The agent

classes are arranged according to the derivation hierarchy of Figure ??.

9.1.4 Delayed initialization

9.1.5 Modes, Options, and Commands

Modes

See Figure 9.3 for the derivation hierarchy of the Mode classes.

Mode

Real Test

Help Main

Data Risk

Unit Work

Play Echo

Msgs Cmds

Figure 9.3: Modes

76 CHAPTER 9. STAGES OF COMPUTATION

Agent Requests Messages

Contracts ReqConData Contract

BondData

TickerTape ReqMktData Price

EndMktData Quant

Specialist ReqMktBook Depth

EndMktBook Depth2

Historian ReqHistory History

EndHistory

Reporter ReqBulletin Bulletin

EndBulletin

ReqScanParms ScanParms

ReqScanSub ScanData

EndScanSub

Runner PlaceOrder

CancelOrder

ExerciseOpts

Bookkeeper OpenOrders Status

AccountData KeyValue

Executions Execution

AllOpens Open

Portfolio

UpdateTime

FinAdvisor AutoOpens

ManagedAccts Accounts

FinAdvisor Advisor

ReplaceFa

Table 9.1: Agents, requests, and messages

9.1. INITIALIZATION VIA CONSTRUCTION OF THE SINGLETREE 77

Options

Commands

__

Command function -- a brief guide:

help Display the text you are reading now

ping Check connectivity between downstream and the shim

next " " " the shim and the tws

look Add newly inserted entries of the database to the shim

load Load the SubRequest table, adding and deleting subscriptions

list List current subscriptions

wait Add an n-second bubble to the shim’s request queue

wake Clear the bubble counter, restarting " "

quit Terminate the shim (after waiting on bubble, if any)

eval Run a child program, reading commands and returning messages

sign Broadcast a signal and its args within a stream group

text " free-form message text " " " "

done Close the IO channels between the shim and the sending child

verb Set the tws log level

news Subscribe and unsubscribe to news bulletins

open Query for open orders

acct " " the (label, value, currency, account) tuple list

data " " contract data

tick Subscribe and unsubscribe to market data

book " to market depth (cancel currently broken)

past Query for historical data (cancel not yet implemented)

wire Create, modify, submit or cancel an order

cash Exercise an option

The following command verbs are synonyms:

load and bulk

acct " account

past " history

wire " order

cash " exercise

78 CHAPTER 9. STAGES OF COMPUTATION

Note that the bulk and individual subscription commands overlap in

functionality, and that it is safest for now to use one or the other type,

but not both, within a session. That is, if you use load, consider avoiding

tick, book, and past, and vice versa.

__

Command notation -- a brief guide:

Commands begin with the command verb, followed by the parameters, if any,

and terminated -- always -- by a semicolon.

The simplest command verbs have no parameters:

help next list wake

open look load bulk

done

The following command verbs allow whitespace and arbitrary comment text

to follow up to the terminating semicolon -- don’t forget it!

ping quit

The parameter syntax for most of the remaining commands is minimal:

wait N;

verb Level;

data Cid;

tick Req Cid I;

book Req Cid I;

past Req Cid I;

cash Act Cid Q Force;

eval Mode [Group] Path;

N : the number of seconds

Q : " quantity

Cid : " contract id, a database uid attribute value of Contract

I : " configuration id, a database table uid, one of, by verb:

tick: TickConfig

book: DepthLimit

past: PastFilter

Level: one of (System, Error, Warning, Info, Detail)

Mode : " " (data, risk)

Req : " " (add, del)

Act : " " (exercise, lapse)

9.1. INITIALIZATION VIA CONSTRUCTION OF THE SINGLETREE 79

Force: " " (yes, no)

Group: a stream group id, or zero for the group parent

Path : " pathname, the program of which should write commands to stdout

and accept log-style text on the stdin

The order command, due to the number of api parameters, is more complicated.

Much of the complexity is hidden in the LineItem record, but modifiable

parameters must be provided on the command line.

wire(Oid,Type,Op,Q,P,Aux,T);

Oid : the line item id, a database uid attribute value of LineItem

Type: an order type, e.g., MKT, LMT, STP, or TRAIL

Op : one of (Create, Submit, Modify, Cancel)

Q : the quantity

P : \" limit price

Aux : \" auxiliary price

T : \" timeout (just a dummy for now, not yet used)

For examples, and in any case if this crib sheet is not sufficient,

see the regression tests, in particular the program text of bin/includes.

Note that the execution report, market scanner, option modelling, and all

financial advisor related requests and messages are not yet supported.

Please subscribe to the mailing list and let us know if you need these

features, see:

http://www.trading-shim.org/mailman/listinfo

9.1.6 Building the Internal Database Dependency Graph

The vector dependency tree representation below is induced by (manually) eliding

edges from the foreign key dependency graph for the dbms relations, according to

four cases:

• Edges that lead to multi-node cycles are removed by eliminating the offending

foreign key type specification in the schema table returned by TupK:schema().

For now, this is a problem only with ComboSet and ComboLeg. It follows that

these tables are not yet effectively supported, and that they will need to be re-

designed before becoming useful.

• Self edges are removed; it is up to the downstream user to ensure that local keys

in tuples are strictly less than the tuple id.

80 CHAPTER 9. STAGES OF COMPUTATION

• Edges to functional tables are removed; these tables are checked exactly once,

prior to any vector input, and so are well defined as long as downstream users do

not (incorrectly) alter such tables while the shim is running.

• Redundant edges are non-deterministically removed from the resulting acyclic

graph until the result is a free tree.

The third step is not only a significant optimization, as it reduces dbms load, but

also necessary for correctness, since the table provided for vector lookup during the

post-order traversal does not include the functional tables, so that there would be an

index-out-of-range error if edges for those tables were included.

The last step, though at most a minor optimization, is actually more a matter of

convenience, as fewer edges need to be added to the adjacency lists below.

Note that the initial – and resulting – dependency graph *includes* the union-join

edges for the variant parts of Contract (e.g., FutDetail) and SubRequest (e.g., PastFil-

ter), even though these foreign key dependencies are not explicitly declared via the sql

create table statements.

See the foreign.* files in ../dot for a graphical representation of the dbms foreign

key dependency graph. Union-join (tagged variant key) edges are indicated there by

dashed-line edges.

9.2 IO Selection and Event Scheduling

9.2.1 Calculating the Processor Clock Frequency

Clock::cpu mips() calculates the processor clock frequency in Mhz for use in

calibrating the processor time stamp counter, which gives much better resolution than

API access to the operating system clock. Such counters are standard on modern pro-

cessors, access to them may be obtained via gcc inline assembler, and such code is

wrapped here in the set time stamp() call provided in the library, which leaves

the problem of calibrating the counter with respect to wall clock time.

The best approach is to compare two processor time stamp counter values after a

reasonably predictable delay, here a call to sleep for 1 second, which has the virtues of

simplicity, accuracy, precision, and portability, though with an admittedly large time

cost.

That cost is acceptable given that it is paid only once, during Clock construction,

and that worse problems arise with the alternatives. Shorter time delays, e.g. via

select(), have proven much less accurate, and though reading /proc/info is fast and

simple, it is not portable.

9.2. IO SELECTION AND EVENT SCHEDULING 81

Since this frequency calibration value affects Scheduler operation, and is used as

well for every event time stamp, the correct choice here is to get it right to start with.

Although averaging might be used, the likelihood of interrupts increases, and compu-

tation must still deal with counter wrap around.

In the procedure Clock::cpu mips(), a loop is used to eliminate such rollover

events, with termination requiring that the processor clock frequency be lower than

264; the risk of the alternative is considered acceptable for the foreseeable future.

In order to avoid the one second startup cost, and reduce the running time of the

regression test suite, access to the Clock::cpu info() function is provided via the

”fast” command line option, for test modes only.

9.2.2 Finite State Automata Definitions

See Figure 9.4

Task

InitialState

Subscription

OrderTimeout

TimedHistory

LocalHistory

Figure 9.4: Tasks

See Figure 9.5

State

Error Begin Quiet Fresh Stale Final

Figure 9.5: States

See Figure 9.6

82 CHAPTER 9. STAGES OF COMPUTATION

Figure 9.6: States

The Parse Cursor State Transition Function

See Figure 9.7

Probe Count

Error

Match FinalBuild

Figure 9.7: Cursor states during event parsing

The Timer Class State Transition Function

See Figure 9.8

Final

Empty Queue Pause

Sleep

Figure 9.8: Shim process timer states

Empty is the start state, and the error state is never reached, with empty cells corre-

sponding to nops. Feed events occur due to request enqueues, and wait, wake and quit

events, respectively, due to their eponymous commands.

In queue state, 20 msec intervals generate slot, last, or null events as the queue has

more than one, one, or no requests, leading to a request send in the case of a non-empty

queue, and changing to the empty state if there was at most one request to begin with.

In pause and sleep states, 1 second intervals generate tick or time events, as the

pause timer is greater than zero or not, and in the case of tick events, also decrement

9.2. IO SELECTION AND EVENT SCHEDULING 83

the timer by one. The wait command increments the pause timer by its parameter, and

is cummulative.

Sleep mode is reached when a quit command is made in pause mode, and wake

clears the pause timer at any time that it occurs, so that (a), quit commands are delayed

by the pause timer; (b), that delay may be increased via additional wait commands; and

(c), the pending quit command is retractable while the pause timer is counting down.

The Subscription Tracking Transition Function

See Figure 9.9

Begin

Quiet Fresh

FinalStale

Figure 9.9: Subscription retry states

Market data subscription tracking starts in the Begin state, with a request enqueued,

whether due to a downstream command, or a timeout-induced retry.

The request send causes a change in state to Quiet, reflecting the lack of data re-

turned for the request up to this point. Tick data price and size events shift state to

Fresh, and quiescent intervals without additional data, whether from Quiet or Fresh,

cause a retry action and change state back to Begin.

Market data farm connection loss, or down events, shift state to Stale, where, unlike

Quiet and Fresh, there is no timer running. When the link comes back up, the state

moves to Quiet.

Finally, if the retry limit, if any, is ever reached, the subscription enters the Final

state, and is cancelled without an attempted renewal.

There are log messages generated to reflect changes in subscription state when the

first data for a given subscription request is received; a retry is performed; and in the

case that the subscription is cancelled. Market data farm state is also tracked outside

the fsm for this automata, and the related messages echoed as internal log messages,

so that downstream processes can track subscription state via log comments, without

having to follow tws error messages.

84 CHAPTER 9. STAGES OF COMPUTATION

9.2.3 Query Data Bar Intervals

The edge list of an interval T 0 is the set of larger bar intervals for which T 0 is the

largest even divisor.

Or, equivalently, given the graph with bar intervals as nodes and the evenly divisible

relation as edges, prune away all redundant edges that leave the graph fully connected.

Let a roll event for a bar interval be a time, measured in seconds since the epoch,

that is evenly divisible by the bar interval width.

Given a 1 second tick event, the associated number of seconds since the epoch, and

a vector of last roll event times for each interval, then this graph allows us to check a

minimum number of bar intervals for roll events, for the common case just two.

Note that at each second the 1 second bar necessarily rolls, and that it is trivially a

common divisor of any larger interval measured in seconds. Using depth-first traversal

starting at that smallest bar, and following each path until a node fails to roll or a leaf

node is reached, correctness follows from transitivity for divisibility, and minimum

work from the definition of the edge relation and structural induction on the graph,

noting that branches are mutually disjunctive.

In practice, for the bar intervals as currently defined, the only bar of interest is m01,

with the two successor nodes of m02 and m05. If the m02 interval is eliminated, the

resulting graph is a list, and array traversal can be used in place of depth-first search.

9.3 Input Analysis

9.3.1 The Internal Database Update Algorithm

Given an explicit representation of the foreign key dependency graph, check the sizes of

all monadic tables prior to non-trivial queries, mark the dependency nodes of enlarged

tables as changed, and, for the dependency graph branch rooted at that table indicated

via the read request, use post-order traversal of that graph to order the queries of marked

nodes to ensure that foreign key dependencies are satisfied.

9.3.2 The Event Input Algorithm

for each reader R of interest, and given its start symbol S for each compound term T

matched starting with S against some prefix of R remove the prefix text from R, and

route T

9.4. OBJECT ROUTING AND PROCESSING 85

9.3.3 Tokenization and Type Checking

Note: According to the logic in the sample client, the tws is free to use the null string

to represent zero. It follows then that the scanner must also read the null string as 0.

9.4 Object Routing and Processing

9.4.1 The Subscription Watchlist Update Algorithm

The results of dbms watchlist queries are sorted in contract id order, and merge traversal

is used to match for adds and deletes:

Once the current watchlist is read from the dbms, copy subscriptions from the

watchlist vector to a temporary, clear the watchlist, and then traverse the old and new

watch lists, queueing subscription cancellations and requests to the router.

9.5 Output Processing

9.5.1 Request Sending

See Figure 9.10

SeqNum

InfoId TickId

RiskId DataId

PastId SubsId

Figure 9.10: Tick Ids

86 CHAPTER 9. STAGES OF COMPUTATION

9.5.2 Dbms Post

9.5.3 Event Logging

9.6 The Position, OrderContext Command

9.7 The Wire Command

9.7.1 Order Wire Format Specification

For more information about order semantics, see the ib docs, that is, at

http://www.interactivebrokers.com/en/main.php, pull down SOFTWARE, and drill down

to the C++ or Java socket client properties frame via:

FIX/API → API User’s Guide → Use the APIs → Java → Java Socket Properties

Note that the PlaceOrder wire format is the high turnover datatype, with a version

id of 15 for the current protocol record format, and that the documentation above de-

scribes approximately 20 additional fields not found in the version 15 format. The

newest version differentiates ignoreRth and rthOnly, and in addition adds auction strat-

egy, ocaType, rule80A, settlingFirm, allOrNone, minQty, percentOffset, eTradeOnly,

firmQuoteOnly, nbboPriceCap, and six BOX parameters.

To verify that the data element sequence ordering corresponds to that of the order

portion of the wire format, see the Java client sample code. For an overall view of the

wire format data element ordering, see the comments in the PlaceOrder class.

9.8 Dealing with Broken Compiles Caused by Prepro-

cessor Macros

Chapter 10

Exploring the Sources Directly

87

88 CHAPTER 10. EXPLORING THE SOURCES DIRECTLY

Chapter 11

Roadmap

89

90 CHAPTER 11. ROADMAP

Part III

Appendices

91

93

94 APPENDIX A. RELATED COMMAND SCRIPTS

shim-070803$ time make

make -j4 shim

make[1]: Entering directory ‘/home/pippin/src/tws/src/shim-070803’

g++ -Wall -g -I/usr/include/mysql -c -o mode.o src/mode.c

g++ -Wall -g -I/usr/include/mysql -c -o once.o src/once.c

g++ -Wall -g -I/usr/include/mysql -c -o bind.o src/bind.c

g++ -Wall -g -I/usr/include/mysql -c -o data.o src/data.c

g++ -Wall -g -I/usr/include/mysql -c -o type.o src/type.c

g++ -Wall -g -I/usr/include/mysql -c -o tabs.o src/tabs.c

g++ -Wall -g -I/usr/include/mysql -c -o rule.o src/rule.c

g++ -Wall -g -I/usr/include/mysql -c -o dfsa.o src/dfsa.c

g++ -Wall -g -I/usr/include/mysql -c -o syms.o src/syms.c

g++ -Wall -g -I/usr/include/mysql -c -o help.o src/help.c

g++ -Wall -g -I/usr/include/mysql -c -o talk.o src/talk.c

g++ -Wall -g -I/usr/include/mysql -c -o init.o src/init.c

g++ -Wall -g -I/usr/include/mysql -c -o link.o src/link.c

g++ -Wall -g -I/usr/include/mysql -c -o load.o src/load.c

g++ -Wall -g -I/usr/include/mysql -c -o bulk.o src/bulk.c

g++ -Wall -g -I/usr/include/mysql -c -o shim.o src/shim.c

g++ -Wall -g -I/usr/include/mysql -c -o wait.o src/wait.c

g++ -Wall -g -I/usr/include/mysql -c -o time.o src/time.c

g++ -Wall -g -I/usr/include/mysql -c -o read.o src/read.c

g++ -Wall -g -I/usr/include/mysql -c -o flow.o src/flow.c

g++ -Wall -g -I/usr/include/mysql -c -o exec.o src/exec.c

g++ -Wall -g -I/usr/include/mysql -c -o feed.o src/feed.c

g++ -Wall -g -I/usr/include/mysql -c -o send.o src/send.c

g++ -Wall -g -I/usr/include/mysql -c -o echo.o src/echo.c

g++ -Wall -g -I/usr/include/mysql -c -o post.o src/post.c

g++ -Wall -g -I/usr/include/mysql -c -o calc.o src/calc.c

g++ -Wall -g -I/usr/include/mysql -c -o leaf.o src/leaf.c

g++ -Wall -g -I/usr/include/mysql -c -o name.o src/name.c

g++ -Wall -g -I/usr/include/mysql -c -o atom.o src/atom.c

g++ -Wall -g -I/usr/include/mysql -c -o term.o src/term.c

g++ -Wall -g -I/usr/include/mysql -c -o envs.o src/envs.c

g++ -Wall -g -I/usr/include/mysql -c -o pool.o lib/pool.c

g++ -Wall -g -I/usr/include/mysql -c -o hash.o lib/hash.c

g++ -Wall -g -I/usr/include/mysql -c -o text.o lib/text.c

g++ -Wall -g -I/usr/include/mysql -c -o wrap.o lib/wrap.c

g++ -Wall -g -I/usr/include/mysql -c -o inet.o lib/inet.c

g++ -Wall -g -I/usr/include/mysql -c -o fork.o lib/fork.c

g++ -Wall -g -I/usr/include/mysql -c -o boot.o lib/boot.c

g++ -Wall -g -I/usr/include/mysql -c -o else.o src/else.c

g++ -Wall -g -I/usr/include/mysql -c -o unit.o src/unit.c

date; g++ -g -o shim once.o bind.o mode.o data.o type.o tabs.o rule.o dfsa.o s

yms.o help.o talk.o init.o link.o load.o bulk.o shim.o wait.o time.o read.o flow

.o exec.o feed.o send.o post.o echo.o calc.o name.o leaf.o atom.o term.o tilt.o

pool.o hash.o text.o wrap.o inet.o fork.o boot.o else.o unit.o -L/usr/lib/mysql

-lmysqlclient -lm

Fri Aug 3 21:18:49 EDT 2007

make[1]: Leaving directory ‘/home/pippin/src/tws/src/shim-070803’

Figure A.1: Output from the make process

A.1. THE MAKEFILE 95

Appendix A

Related Command Scripts

A.1 The Makefile

A.2 Database and Table Setup

A.2.1 Database Setup

sql/setup.sql

sql/table.sql

sql/names.sql

sql/perms.sql

A.2.2 Table Creation and Recreation

sql/create.sql

sql/drop.sql

A.2.3 Common Table Creation Scripts

sql/enum.sql

sql/syms.sql

sql/secs.sql

sql/subs.sql

sql/xact.sql

sql/load.sql

96 APPENDIX A. RELATED COMMAND SCRIPTS

Appendix B

Error Messages and Exceptions

97

98 APPENDIX B. ERROR MESSAGES AND EXCEPTIONS

Appendix C

Library Components and Usage

C.1 Singletons and Constants

C.1.1 The Components Singleton

An object also an instance of the single tree pattern has three data members of types

Init, Data, and Root, each of which are const values, and only the last of which, root,

is available to the parent class via its static member function root().

The data members are defined as values in order to allow cyclical references within

the single tree instance constructor.

The second data member, Data, should include all the pure constant singleton ob-

jects of the application.

An object is pure const if it is itself const, and all its data members are either

values or pure const references. An object is const if it only occurs in const contexts

once constructed, that is accessible via a const reference, or as a value within a const

context.

Perhaps more simply, a pure const object has no imperative references, and no

hidden imperative aliases to itself created during construction. Such an object is also

purely functional, that is completely defined during construction.

The first, Init, must set up references to all containers and other stateful objects

referred to during data construction. E.g., if Data includes a constant cache to publicly

named symbols also stored anonymously in a symbol table, then the empty symbol

table must be created by Init, so that it is available when the lookup/insertion is done

as the cache copy is looked up. Or, if a stateful derived class mode variable is used

to choose among constant values within Data, again that mode object must be set up

99

100 APPENDIX C. LIBRARY COMPONENTS AND USAGE

within Init.

The final data member value, of type Root, is meant to be the root reference to all

the singleton objects in the application. It should include references to all the members

of Init and Data.

An instance of the singletons class template has three states, as Init, Data, and Root

are constructed one by one. It constrains singleton construction to occur in this order,

provides a layer of indirection via its parent class to avoid header file coupling, and

serves to encourage stratification of singletons by binding pattern, with Init providing

the minimal state needed for application domain specific bootstrapping, Data all the

pure functional objects that can be defined without runtime input beyond the command

line arguments and configuration files, and Root a mixture of new, stateful object ref-

erences and the simpler data members borrowed from Init and Data.

C.1.2 The Memory Allocator

See Figure C.1

Pool

PermPool Pushdown

Products TimeSlot Factories

Figure C.1: Pools

C.1.3 The Token Type Hierarchy

All types in the lattice are either valid, or else the empty type None. Base types, the

immediate parents of the empty type None, partition the type space. Derived types, all

the valid non-base types, are type unions of other valid types.

Conversion from a specific to more general type is allowed, so that the edges in the

type lattice represent the allowed type conversions, of types to their ancestors.

The stream lexical analyzer prefers most specific valid types, so that all well-formed

data fields observed as input are given as type one of the base types. The required types

used in record format specifications, on the other hand, may be named by more general

derived types, in order to accomodate input variety.

C.2. STRINGS, IDS, HASH CODES, AND TEXT BUFFERS 101

Since base types have type codes a unique power of two, and derived types are

bitwise disjunctive sums of their children, it follows that observed types are consistent

with required types if and only if their bitwise sums are non-null. */

C.2 Strings, Ids, Hash Codes, and Text Buffers

The m3 String class, § C.2.1, provides constant character sequences, as opposed to the

C++ standard library component of the same name, which allows a wide variety of

imperative operations. The Buffer class, § C.2.3, is the much simpler, and so more

limited m3 alternative to imperative standard strings. As elsewhere in the m3 library,

the primary reason for avoiding the standard library components is the need to provide

pool-based memory allocation via parameterized rather than static state. In this case,

the freedom to expose to clients the results of hash code computation, § C.2.2, is an

additional advantage.

C.2.1 The String Component

An instance of the string class is a triple (octs, data, code), the number of octets, pointer

to data, and hash code, respectively. The String class is unusual in providing two

constructors. The first constructs the string from an ordinary null-terminated c-string,

and using a object stack allocator, so that the result may be short-lived. The second

takes . . .

C.2.2 Hash Code Computation

Hash code computation of 32 bit codes for word-aligned strings, null padded to be

integral multiples of 12 bytes.

The C source code this version is based on, along with an explanatory article, was

found at http://burtleburtle.net/bob/hash/evahash.html .

It came with the following notice:

By Bob Jenkins, 1996. bob jenkins@burtleburtle.net. You may use this

code any way you wish, private, educational, or commercial. It’s free.

Use for hash table lookup, or anything where one collision in 232 is ac-

ceptable. Do NOT use for cryptographic purposes.

I’ve adaptated it to C++ and specialized it for 32-bit x86. In particular, the hash

code arithmetic has been rewritten to first copy the key to a word-aligned, null-padded,

http://burtleburtle.net/bob/hash/evahash.html

102 APPENDIX C. LIBRARY COMPONENTS AND USAGE

class functionality plural usage

TmpBuf string temporary false internally, for temporaries

CatBuf string catenation false internally, for temporaries

SqlBuf null-term strings true read via the tws socket api

NulBuf null-term strings true send ” ” ” ” ”

BarBuf log format output true by the Logger, for requests

Table C.1: Buffer derived types and usage

multiple-of-12-byte buffer, which input works out to be much more tractable than raw,

unaligned, arbitrary length C-style character strings.

Judging by the article, Jenkins is clearly aware that the word aligned computation

is easier to read and write; he evidently chose the unaligned approach in order to satisfy

the widest possible range of clients. Note, by the way, that he gives source for 64-bit

hash code computation as well.

Word alignment allows each group of four character operations to be folded into

a single unsigned integer expression, and the null padding allows the switch logic for

string remainders to be folded into the main loop.

Although the loop traversal code is considerably different in style from that of

Bob Jenkins’ original, each iteration of the loop still works with 12-byte character se-

quences, and in Hash::State::operator+=(nat 0 key), the first three assignments corre-

spond to Jenkins’ combine() step, and the following loop, to the mix(), or permutation,

step. Note that in order to fold the post-loop remainder computation into the main loop

body, I chose to: (1) regularize the string remainder suffix combining step to conform

with that used in the loop body; the original varied slightly between loop body and

post-loop; and (2) use the string length as the salt, rather than attempt to combine it

with the state vector part way through the computation.

As a result, the hash codes that are computed for strings of length greater than 8

differ from Jenkins’ original code. Since I still use all the original input information,

and the permutation step is unchanged, the likelihood of collisions should also be un-

changed.

C.2.3 Buffer Types and Their Uses

See Figure C.2 for the derivation hierarchy of the buffer classes.

See Table C.1.

A buffer is plural when multiple distinct tokens can be appended to, and distin-

guished within, the buffer all at one time. E.g., null-terminated strings in a NulBuf,

or vertical bar terminated character sequences within a BarBuf. Alternatively, a buffer

is singular when each character sequence appended to the buffer is catenated directly

C.2. STRINGS, IDS, HASH CODES, AND TEXT BUFFERS 103

Buffer

FixBuf VecBuf

TmpBuf InpBuf SqlBuf OutBuf

CatBuf SeqBuf

NulBuf SepBuf

DotBuf BarBuf CsvBuf

Figure C.2: Buffer variants

adjacent to the previous, the one example being the CatBuf.

Source streams have one msg buffers, stream, providing fixed size blocks as the

targets of system input routines,

Cat buffers occur in Tables, the Dbms, the Logger, and the Historian; Nul buffers,

in Tables, twice;

There is currently only one instance of a TmpBuf, in Source, where it is shared

with a tokenizer for the duration of a parse, and from there used by Cursor::probe,

Parser::scan, and Tokens::scan itself.

Reading Characters

Whether input is via reads from a socket, or file, and in the latter case, by using the

fread or read api, still there is the potential for incomplete records due to partial reads.

In addition to the possibility that the api calls might return a partially filled buffer, that

buffer is in any case of fixed size, and the size is used to limit the number of characters

read, so that even when complete records are ready, they might be split anyway.

Due to this possibility of partial reads, callers to the Buffer read procedures are

expected to copy characters out of the read buffer, e.g. to a queue, and allow them to

accumulate until a complete record is available.

104 APPENDIX C. LIBRARY COMPONENTS AND USAGE

The Hash Map Component

Let a domain type D provide equality and a hash function id(), and a range type R
provide operator*(), an inverse operation returning an exemplar of type D. Then

for the class template Function, an instance of type Function<D,R> maintains a

function mapping between pairs of the domain and range according to the calls made

to the operator R::invert(). More precisely, for a map F ; a triple (D, R, S) where

D is in the domain of F, both R and S are in the range, and D is the exemplar of R, so

that ∗R = D; and given a call F.invert(R) returning S, so that (D, S) ∈ F , then

(D, R) ∈ F ⇔ R = S.

The operational interpretation is that the pair (D, R) is in the hash F when the

inverse ∗R is D; there has already been at least one call F.invert(R); and for the

first occurrence of such a call, the key D did not already exist in the hash prior to that

call. Or, less formally, given an attempted insertion of R into F, and as long as R “got

there first” as an argument to F::invert(), that is before any other member of R
having D as exemplar, then F (D) = R ⇔ ∗R = D.

The class template Function is monotonic, so that pairs once added are not re-

moved. The uncertainty about whether a call F.invert(R) achieves its intended

result of inserting R into F follows directly from the possibility that multiple instances

of R may share a common exemplar. For the common case where the operation

R::operator*() is one-to-one, then its inverse is by definition a function, the map

F implements that function, and calls to invert necessarily succeed, so that for ∗R = D,

the call F.invert(R) returns R, and we know (D, R) ∈ F .

The class template Function provides as operators to derived types the previously

mentioned bind operation invert(); the lookup operation select(), which re-

turns a pointer of type R; and the traditional size() and capacity() operations.

The open buckets are kept in sort order, and lookup in collision sets uses binary search.

The Function Type and the Domain, Subset, and Folder Derived Types

For a domain D and range R, the base class Function provides the membership assertion

constraint invert() for function pairs (D, R), the membership lookup operator select(D),

and also the traditional size() and capacity() queries. Since names in Function are

protected, that template is not directly useful to clients.

There are three derived class templates:

• Domain provides a history of all set members seen up to the present.

• Subset exposes the membership pair constraint, and allows the client to test for

membership.

• Folder provides as well the operator clear() to rewrite history.

C.2. STRINGS, IDS, HASH CODES, AND TEXT BUFFERS 105

Since Domain provides only the membership constraint, it is fully declarative,

while Subset, with the membership pair binding operator, is monadic, and Folder, with

the potential to destroy information via clear(), is fully imperative.

In return for providing the convenience of the declarative map operator[], Domain

requires a third template parameter U, the type of the factory for the universe of the

range type R; that the factory provide an operator create(D) returning a new instance of

R; and that a reference to the factory be provided during construction. While Domain is

used by the identifier factory Identifiers, most client mappings are implemented using

the more flexible Subset class template.

Initialization of the Components Singleton

The Components singleton includes as its first data member a reference to an object

of class Memory, the memory allocator singleton. Memory is a factory for allocator

pools, which themselves contain memory blocks chopped from (much larger) memory

mappings. The memory allocator, in addition to creating pools, keeps track of all pools,

blocks, and mappings.

Clients typically work with the pools; blocks are hidden, and client access to the

memory allocator is also limited to restrict pool construction. The pools themselves

include a reference back to the memory allocator so that new blocks can be requested

as needed.

The static BootMemory boot() method constructs Memory bottom-up. An initial

mapping is first requested from the system, and a BootMemory object created from it,

during which: a block is constructed; a permanent pool, the seed, is constructed using

the block; and the singleton memory allocator Memory is constructed from the seed.

Data members in the BootMemory object are values, declared as such both to sim-

plify memory allocation accounting, and to allow forward references, in particular of

Memory as an argument to the seed pool constructor. Fortunately, permanent pools

also take an initial block as one of the arguments to the ctor, and do not actually call on

the Memory reference data member until that first block is exhausted.

The boot() method goes on to construct and return the Components object, the root

singleton for all library components, including Memory.

Runtime Sized, Fixed Dimension Array Constants

The Store, Table, Array, Block, and Index class templates provide runtime

sized, fixed dimension arrays, with indexing and bounds checking varying as described

in Table C.2; the sizeof values were taken using gcc 3.4.4.

Store is essentially a wrapper for a pointer to a logic variable, and all the other array

106 APPENDIX C. LIBRARY COMPONENTS AND USAGE

indexed by (given index i and base j) sizeof

Store i unchecked 4

Table i-j, bounds checked 12

Array i-0, ditto 12

Block i-1, ditto 12

Index via binary search 12

Value as for Table, though cells are values 12

Table C.2: Indexing for table template classes

types other than Value inherit from Store, so that for all the reference-semantic tables,

the cells are logic variables, and values once bound to a cell are immutable. All the

array types other than Store maintain their index range as a half-open interval, which

is why the sizeof values jump from 4 to 12.

The Binary Search Object

Given that the template type T provides an id() operator returning a natural number;

in the ctor, for the block pointer parameter, that the referred-to block has size equal

to the ctor parameter n, itself less than the size of the hardware address space; and

that the block be filled with valid object pointers, the referred-to objects of which are

in ascending order according to operator id(); then an instance of Search<T>returns,

upon dereference, a pointer to an object of T having id() equal to the ctor key parameter,

if such an object exists in the block, and zero otherwise.

The Timestamp Function

For a processor with 32bit words, and where the long long unsigned (Long) type is

64bits, read the processor time stamp counter into the two halves of a Long reference

parameter.

File Descriptor Setup for Pseudo Terminals

PseudoTerm is a factory for ForkResult objects describing pty connections, or else the

system call failure that prevented their setup. The algorithm used here is loosely based

on that of [8]; see pp. 692–693 there for an example in C.

For system V platforms, and in particular Linux and Solaris, the slave becomes the

controlling terminal on open(). The ioctl call with TIOCSCTTY is used on BSD (and

OS X) to acquire a controlling terminal; linux also allows this call, although it is, as

stated above, not necessary.

C.3. EQUIVALENCE CLASSES AND LOGIC VARIABLES 107

For now, the child image() procedure calls acquire ct(), and so performs the ioctl

operation unconditionally. As an alternative, the PseudoTerm factory could have architecture-

specific control, and although the resulting mode data would be undesirable, it may be

necessary to add such in the future.

PseudoTerm is a *non-reentrant* factory for pty setup in support of coprocesses;

the plumbing() method may be used as a replacement for fork(), with the pid parameter

indicating to the caller whether the return is in the parent or child.

The object bifurcation that allows this to work occurs because the singleton heap

allocation is of MAP PRIVATE memory, and changes to such memory are private (in

practice, by COW) to each process, and the parent and child each get, in effect, indi-

vidual copies of the PseudoTerm object.

Making the plumbing method reentrant, and so thread-safe, would require that: the

three scalar reference data members be replaced with a stack of tuples; a lock be used

to control access to the stack; calls to the ptsname() system call, which is not reentrant,

be locked; and that the return value for the slave pty name be copied out into distinct

strings, those also stored on the stack. Note additionally that the strerror() function

used in error reporting is also not required to be reentrant.

C.3 Equivalence Classes and Logic Variables

C.3.1 Representing Equality Theories Via Disjoint Set Union

Although many application domain classes can use simple pointer comparison to de-

termine equality, sometimes multiple objects may be grouped into equivalence classes,

so that a more coarse-grained equality theory is needed.

The disjoint set template class EqClass provides, in addition to the constructor,

the public operations operator+=() and operator==(), the former to take the

union of two equivalence classes, and the latter to determine whether two representa-

tives are in the same equivalence class. The operator+=() method implements set

union by rank with path compression, and is nearly constant time; see Ch 22 of [4] for

details.

What is the Logical Reading?

The set union operator creates a binding between objects, after which they are in the

same equivalence class, which raises the question of the logical meaning of the union

operator; it appears to provide some kind of equality constraint, but what kind?

For the common case where the EqClass template is instantiated for some finite

domain type, the union operator can be usefully compared to equality constraints over

108 APPENDIX C. LIBRARY COMPONENTS AND USAGE

that domain.

If the notion of finite domain types seems unfamiliar, consider the finite set:

{red, green, blue}, which provides symbols that may be used in logical statements for

the related domain. Given e.g., two pixel variables P and Q with values constrained to

be in {red, green} and {green, blue} respectively, then the additional knowledge that

the pixels are located in a region filled with a common color gives as well the equation

P = Q, and the variables are constrained by set intersection to the value green.

So what, if anything, does disjoint set union over a finite domain have to do with

equality for that domain? Each non-trivial binding by the union operator gives a less

precise equality theory, so that information is discarded. This is in opposition to domain

constraints as above, which monotonically add information to the system. For a given

finite domain, equations and disjoint set union are in some sense duals, as domain

sets are constrained by intersection or generalized by union. The set union operator

is actually second order, mapping from one equality theory to another; it’s no help

whatsoever in testing equality constraints for a particular theory.

Common Case Usage

That’s why for the common case disjoint set objects are used as part of a two-stage

computation, with bindings created in the first step, and equality tests made only in

the second, once the equality theory is known. E.g., given a set of type constants for

both object and object index types, and where an instance of the index type can be

used to lookup the related object, rules relating object and index types are added at

initialization, and comparisons made after that stage.

Note that it is up to the client to use privacy to prevent unwanted late stage union

operations; friendship can’t be used in the template to limit access to the union opera-

tion, since the template type T is possibly a typedef, not necessarily a class, and so not

qualified to be a class key. Const annotation is of no help either; the optimizations to

the union-find algorithm that change the time cost from linear to effectively constant

time make the core find set() operation thoroughly imperative in nature.

C.4. BLOCK-DOUBLING CONTAINERS 109

C.3.2 Single Assignment Pointers as Logic Variables

C.4 Block-Doubling Containers

C.4.1 Block-Doubling Via Handles

Handle

A Handle<T,C>is essentially a wrapper to an imperative T** data member intended

for use by a container of type C. The handle knows the size of the pointer block, and has

the facilities to free and reallocate a larger such block as needed. The related container

of type C, by the same token, must provide a replication operation copy() which accepts

two handles source and target and copies all the T* values from the first to the second.

More literally, a handle is an imperative quintuple:

Handle(Copy, Cont, Data, Exp2, Used)

where Copy is the Copier singleton, for allocation and reallocation; Cont, the con-

tainer of type C responsible for the copy update after reallocation; Data, a T** pointer

to a region of size 2Exp2; and Used, the largest offset from the base of Data yet having

been bound to an application-defined value.

The Handle<>interface provides read access via T* operator[](nat), and write ac-

cess using void bind(nat, T* e). Access is checked, and, letting N stand for Maps::Size,

Table C.3 gives the four cases for an index i to bind() for a handle with size n.

description action

1 0 <= i < n Data[Used..i] := 0

Data[i] := e

Used := max(Used, i)

2 n <= i < 2n, 2n <= N enlarge and copy Data, and bind as in 1

3 n <= i < 2n, 2n > N throw an exception

4 2n <= i throw an exception

Table C.3: Case analysis for Handle::bind()

Although test code may allow initialization in order to simplify debugging, for

the finished component, blocks will not be initialized when first allocated, in order

to minimize the time cost of dynamic allocation for large containers. Conversely, the

handle must ensure that the unassigned region [0..Used] is initialized, which is the

reason for the incremental initialization in the bind() operator (and operator[], as well).

As a result, though access time is still constant time for sequentially filled vectors,

it is only amortized constant time for hash tables. In practice this isn’t very important,

110 APPENDIX C. LIBRARY COMPONENTS AND USAGE

for a number of reasons, and for the application programmer who disagrees, it is easy

enough to choose a small initial block size.

Handle creation is performed by the friend Copier on behalf of related containers.

The size parameter Exp2 is interpreted as a request for a block of size 2Exp2, so that

Exp2 should be the log base 2 of the desired block size. The size parameter is of

type unsigned character, or Char, to remind the application programmer that the size

parameter is not interpreted as the absolute block size. The value of the size parameter

is restricted to fall in 0, 31, else an exception is thrown, and the actual size of the

allocated block is furthur clamped between 26 and some implementation defined limit,

typically the memory allocator map size, at the time of this writing 0x1000000, or

224, around 16 meg.

frequency object size word size floor ratio factor

132 4 4 1 1

48 1 4 0 1

1 12 4 3 4

Table C.4: Frequency and other statistics for instances of Handle <>

The Area Component

The pair (Exp2, Data) is in the relation Area when Data points to an memory area of

2Exp2 words

C.4.2 Vectors and Queues

Reference and Value Vectors, Stacks, Queues, and Scrolls

See Figure C.3

vector

Vector

Interval

VecItr

Figure C.3: Vector implementation

See Figure C.4

See Figure C.5

C.4. BLOCK-DOUBLING CONTAINERS 111

QueueInterface

Queue Scroll

ring

queue scroll

Figure C.4: Queue implementation

Parent

StackInterface

Stack stack

Figure C.5: Stack implementation

The Vector and vector templates provide reference and by-value semantics, with

append storing pointers and values, and the index operator returning references and

values, respectively.

The Stack and stack templates provide reference and by-value semantics, respec-

tively, while sharing an otherwise common interface. See the parent classes Vector<T>and

vector<T>for details.

C.4.3 Splay Trees

The component code for the Tree<>class template implements splay trees, as defined

and analyzed in [5], and is based on sources by Daniel Sleator, who released them to

the public domain. The original, top-down-splay.c, can also be obtained drilling

down from Daniel Sleator’s home page. He explains in comments from that source file

as follows:

“Splay trees”, or “self-adjusting search trees” are a simple and efficient

data structure for storing an ordered set. The data structure consists of

a binary tree, without parent pointers, and no additional fields. It allows

searching, insertion, deletion, deletemin, deletemax, splitting, joining, and

many other operations, all with amortized logarithmic performance. Since

the trees adapt to the sequence of requests, their performance on real ac-

cess patterns is typically even better.

http://www.link.cs.cmu.edu/link/ftp-site/splaying/top-down-splay.c
http://www.cs.cmu.edu/~sleator/

112 APPENDIX C. LIBRARY COMPONENTS AND USAGE

The splay algorithm in the code by Sleator is adapted from simple top-down splay,

as given at the bottom of p. 669 in [5]. Sleator goes on to explain his adaptation:

The chief modification here is that the splay operation works even if the

item being splayed is not in the tree, and even if the tree root of the tree is

nil. So the line:

t = splay(i, t);

causes it to search for item with key i in the tree rooted at t. If it’s there, it

is splayed to the root. If it isn’t there, then the node put at the root is the

last one before nil that would have been reached in a normal binary search

for i. (It’s a neighbor of i in the tree.) This allows many other operations

to be easily implemented ...

See Figures C.6 and C.7.

ProtoSet

monadicset dynamicset

MonadicSet DynamicSet

Figure C.6: Set maps

protected

ProtoMap

MonadicMap DynamicMap

Figure C.7: Map inheritance

C.4.4 Hashed Functions

See Figure C.8

Function

Domain Subset Folder

Figure C.8: Domain maps

C.5. MOSTLY DECLARATIVE TABLES AND SEQUENCES 113

C.5 Mostly Declarative Tables and Sequences

C.5.1 Logical Tables

The Table Build <> Factory

Build<T,S>is a short-lived factory template used to create constant tables of user-

defined objects or primitive values. The input tables for these templates are arrays of

values, e.g., object pointers or natural numbers, and must have sizeof at least S = N *

sizeof(V), where N is the table dimension, and V the value type, T* or T as T is an

object or value.

The Build template has five factory methods, value(), array(), block(), index(), and

table(), each producing an indexable result, the similarly named array type from table.h.

The value() method is the only one of these to produce a table of primitive values, such

as natural numbers, with the others expecting an array of object pointers as input.

The first three of the aforementioned methods simply construct and fill a Value,

Array, or Block table, respectively, while given their preconditions, the last two enforce

ordering constraints as well. Briefly, given an input vector, index() sorts the possibly

sparse values and returns an Index, while table() requires that the inputs be a sequence

permutation, putting that permutation in sequence and returning a Table.

More precisely, index() and table() have the following preconditions and results:

both require that objects of type T be totally ordered via operator<(), which is used

in constructing an intermediate heap; and both copy those inputs in ascending order

from the temporary heap to the result array. The method table() in addition requires

that T have a member function id() returning an integral type ordered consistently with

operator<(), which it uses for sequence checking.

The Index array produced by index() uses binary search to provide operator[], so

that sparsely indexed inputs are accepted, at the cost of lgN access time. The Table

array produced by table() provides based array indexing, so that for an object T in a

result Tab, T == Tab[T.id()] To achieve this invariant, table() requires that the inputs

once sorted be a sequence according to id(), that is be in ascending order without gaps

or duplicates in the index values, and throws an exception otherwise.

For the common case where table() is applied to already ordered input vectors, and

since heapifying the input vector takes linear time, does not disturb the already sorted

input array, and heap decrement is constant time for an input vector that is already in

sort order, then the sort operation adds only a constant factor to the time cost of table

construction. E.g., for a Type T, Pool pda p, and an array of object pointers tab, where

the objects are in sequence by T::id(), the expressions below construct, in linear time,

tables indexed by T::id() with unit and log index times, respectively:

Build<T, sizeof(tab)>(p, tab).table();

114 APPENDIX C. LIBRARY COMPONENTS AND USAGE

Build<T, sizeof(tab)>(p, tab).index();

C.5.2 Sequences

Lists

A proper list is bound, with tail other than self, while unbound and self-cyclical lists are

false, with nil in particular constructed to be self-cyclical. The bool test compares logic

var values – pointers – rather than the variables themselves, which, for a previously

unbound tail, would create a cycle between the newly bound tail and its preceeding

cons cell.

Lifo

The List copy constructor is meant to provide limited client access, (e.g., to construct a

list iterator), without actually letting a reference escape; the value return is by design.

Cells

Cell<T> occupies an intermediate point in type safety between Pair<T>, and raw

void pointers. It provides more flexibility than pairs, since in the binary constructor,

cells allow an untyped, imperative body, while pairs accept at most a list tail. Cells wrap

a head reference to the template type with a void* body, useful as the argument to

placement new during list and pair construction. As wrappers, they provide an explicit

type, so obviating the need to pass naked void* parameters around.

Cells have been used in the append operator for Tape<T>, and the constructors for

List<T>and Lifo<T>, where they are passed in by value, allowing those types also

to be constructed by value, without needing pool allocation. E.g., the Pool class has a

Tape<Block>pda, for allocation blocks, and one of its derived classes, PushDown,

has a Lifo<Mark>pda for memory marks; callers to both the append operation and

the template ctors take advantage of this ability to pass pairs by value.

The Unit Type

The hard truth is that neither C nor C++ have a true unit type, making do instead with 0.

If we want a real unit type for recursively defined generic lists, we need to define one,

and use casts within the template list classes to convert it to whatever the instantiated

type might be.

In the ideal case, the unit type has no internal structure; it is simply a unique address

arbitrarily designated to terminate lists. Whatever happens to its internal value, that

C.6. SYSTEM CALL WRAPPERS 115

address remains constant, so that for properly written code, it continues to serve its

purpose even if the internal value is corrupted.

Still, since the unit type is shared across all lists in a program, we must consider the

possibility that one list client will fail to test for the empty list, and attempt to treat the

unit object as an ordinary cons cell; and that other, later code, will then go on to make

the same mistake again, in which case we wish to contain the damage and simplify

debugging.

This dictates, first, that the unit type be the size of an ordinary cons cell, to shield

following memory; second, that the ”head” be zero, so that loops attempting to deref-

erence an empty list and interpret the head as a reference to a data value crash imme-

diately; and third, that the ”tail” be non-zero, and so treated as bound, so that it can not

be bound to real cons cells.

None of this is an issue for lists and links, where the unit type is used as a private

value of the class. Even for lisp, or lifo, lists, it is meant as a private value for use

by the default constructor, and again, there is no problem. The nature of a unit type,

however, is to be used widely, and in ways which the original designer did not predict,

and so perhaps these precautions are sensible. Certainly they are effectively free, since

the unit type is the prototypical singleton; and certainly they are reasonable, since after

all we are using casts and so are not fully protected by the type system.

The bottom line is that clients that fail to test for the empty list before dereferencing

for head values will have problems, just as if the list was not even terminated in the first

place. There is a sense in which we can’t get past something that acts more or less like

zero as a unit type, at least until algebraic type inference is added to C++. The real

value of the unit type is not for the application clients – if they use lists properly,

they’ll never know it exists – it’s for the template classes, which can avoid nasty bugs

by properly terminating lists, so that an unbound list tail is not accidently bound to

some comparison value via equality. In particular, list differences are terminated when

read, so that list usage naturally has two modes, first declarative creation with logic

variables, followed next by functional traversal with fully bound references.

C.6 System Call Wrappers

116 APPENDIX C. LIBRARY COMPONENTS AND USAGE

Bibliography

[1] Bjarne Stroustrup. The C++ Programming Language. Addison-

Wesley, third edition, 1997. Stroustrup has a page for TC++PL:

http://www.research.att.com/˜bs/3rd.html.

[2] Timothy A. Budd. Multiparadigm Programming in Leda. Addison-Wesley, 1995.

See http://web.engr.oregonstate.edu/˜budd/Books/leda/.

[3] James O. Coplien. Multi-Paradigm Design for C++. Addison-Wesley, 1999. See

http://users.rcn.com/jcoplien/.

[4] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. In-

troduction to Algorithms. MIT Press and McGraw-Hill, 1990. See

http://theory.lcs.mit.edu/˜clr/.

[5] Sleator and Tarjan. Self-adjusting binary search trees. Journal of the ACM,

32(3):652–686, July 1985. The file top-down-splay.c is available from

http://www.link.cs.cmu.edu/splay/.

[6] Bob Jenkins. Hash functions for hash table lookup. On his site at

http://burtleburtle.net/bob/hash/evahash.html, written over 1995 – 1997.

[7] Bob Jenkins. Hash functions. Dr. Dobbs Journal, September 1997.

http://www.burtleburtle.net/bob/hash/doobs.html.

[8] W. Richard Stevens and Stephen A. Rago. Advanced Pro-

gramming in a Unix Environment. Addison-Wesley, sec-

ond edition, 2005. The publisher’s page is currently

http://www.aw-bc.com/catalog/academic/product/0,1144,0201433079,00.html.

[9] Douglas E. Comer, David L. Stevens, and Michael Evengelista. Internetworking

with TCP/IP, volume III: Client-Server Programming and Applications. Prentice

Hall, 2000. See http://www.cs.purdue.edu/homes/dec/netbooks.html.

[10] Paul DuBois. MySQL. Sams, third edition, 2005. The doorstop has its own home

page at http://www.kitebird.com/mysql-book/.

117

http://www.research.att.com/~{}bs/3rd.html
http://web.engr.oregonstate.edu/~{}budd/Books/leda/
http://users.rcn.com/jcoplien/
http://theory.lcs.mit.edu/~{}clr/
http://www.link.cs.cmu.edu/splay/
http://burtleburtle.net/bob/hash/evahash.html
http://www.burtleburtle.net/bob/hash/doobs.html
http://www.aw-bc.com/catalog/academic/product/0,1144,0201433079,00.html
http://www.cs.purdue.edu/homes/dec/netbooks.html
http://www.kitebird.com/mysql-book/

118 BIBLIOGRAPHY

[11] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Tech-

niques. Morgan Kaufmann, 1993. Amazon.

[12] Robert Mecklenburg. Managing Projects with GNU Make.

O’Reilly, third edition, 2005. Currently available online at

http://www.oreilly.com/catalog/make3/book/index.csp.

[13] Gary V. Vaughan, Ben Elliston, Tom Tromey, and Ian Lance Taylor. GNU Au-

toconf, Automake, and Libtool. New Riders, 2000. The Goat book is available

online at http://sourceware.org/autobook/.

[14] Donald E. Knuth. The TeXbook. Addison-Wesley, 1984.

Knuth’s page for the Computers & Typesetting books is

http://www-cs-faculty.stanford.edu/˜knuth/abcde.html.

[15] Leslie Lamport. LATEX: User’s Guide and Reference Manual, 1986.

Lamport’s publications.

[16] Emden Gansner, Eleftherios Koutsofios, and Stephen North. Drawing Graphs

with Dot, February 2002.

[17] Nick Drakos. The LATEX2html Translator, 2007. www.latex2html.org.

[18] Burton G. Malkiel. A Random Walk Down Wall Street. Norton, first

edition, 1973. First published in 1973, and now in its 9th edition; see

http://www.princeton.edu/˜bmalkiel/.

[19] Benoit B. Mandelbrot. The (Mis) Behavior of Markets : a Fractal View of Risk,

Ruin, and Reward. Basic Books, 2004. Amazon.

[20] Emanuel Derman. My Life as a Quant: Reflections on Physics and Fi-

nance. Wiley, 2004. Derman’s Writings on Quantitative Finance page:

http://www.ederman.com/new/index.html.

[21] Benjamin Graham. The Intelligent Investor. Harper & Row, fourth edition, 1973.

Amazon.

[22] Peter Lynch with John Rothchild. One Up On Wall Street. Simon & Schuster,

1989. Amazon.

[23] Peter Lynch with John Rothchild. Beating the Street. Simon & Schuster, 1993.

Amazon.

[24] Jack D. Schwager. Market Wizards. HarperBusiness, 1989. Amazon.

[25] Jack D. Schwager. The New Market Wizards. HarperBusiness, 1992. Amazon.

[26] Jack D. Schwager. Stock Market Wizards. HarperBusiness, 2001. Amazon.

[27] Edwin Lefévre. Reminiscences of a Stock Operator. Wiley, 2006. First published

in 1923, this is effectively a fictionalized biography of Jesse Livermore; there are

reviews at Amazon.

http://www.amazon.com/exec/obidos/ASIN/1558601902
http://www.oreilly.com/catalog/make3/book/index.csp
http://sourceware.org/autobook/
http://www-cs-faculty.stanford.edu/~{}knuth/abcde.html
http://research.microsoft.com/users/lamport/pubs/pubs.html
http://www.latex2html.org/
http://www.princeton.edu/~{}bmalkiel/
http://www.amazon.com/exec/obidos/ASIN/0465043577
http://www.ederman.com/new/index.html
http://www.amazon.com/exec/obidos/ASIN/0060155477
http://www.amazon.com/exec/obidos/ASIN/0140127925
http://www.amazon.com/exec/obidos/ASIN/0517154528
http://www.amazon.com/exec/obidos/ASIN/0887306101
http://www.amazon.com/exec/obidos/ASIN/0887306675
http://www.amazon.com/exec/obidos/ASIN/0066620597
http://www.amazon.com/exec/obidos/ASIN/0471059706

BIBLIOGRAPHY 119

[28] Chester W. Keltner. How to Make Money in Commodities. The Keltner Statistical

Service, 1004 Baltimore Ave., Kansas City 5, MO, 1960.

[29] Ralph M. Ainsworth. Profitable Grain Trading. Traders Press, Greenville, SC,

1980. First published in 1933, and reprinted by Traders’ Press.

[30] J. Welles Wilder, Jr. NewConcepts in Technical Trading Systems. Trend Research,

P.O. Box 450, Greensboro, NC 27402, 1978. Amazon.

[31] Bill Pippin. Optimizing Threads of Computation in Constraint Logic Programs.

PhD thesis, The Ohio State University, January 2003. Online copy.

[32] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-

sign Patterns. Addison-Wesley, 1995. For more about the GoF book, see:

http://hillside.net/patterns/DPBook/DPBook.html.

http://www.traderspress.com/detail.php?PKey=372
http://www.amazon.com/exec/obidos/ASIN/0894590278
http://www.trading-shim.com/about/pippin/dissert.pdf
http://hillside.net/patterns/DPBook/DPBook.html

	Introduction
	Outline
	Caveats
	Notation
	Acknowledgements
	Free Software
	Developing the Shim
	Learning About Finance
	Personal Thanks

	Why the Shim?
	Background
	Motivation
	Why Not a Lightweight Library?
	What Features Do We Want?

	The Shim Architecture

	I Tutorial
	Installation, Setup, and Startup
	Resource Requirements
	The Network
	The Trading-shim Database
	The IB tws
	Resource Selection

	Program Configuration
	Download and Compile the Shim
	Allow Connections to the IB tws
	Provide the Connection Parameters

	Database Creation
	Set the Dbms Isolation Level
	Create the Databases

	Shim Startup
	Run the Shim
	Run the Test Scripts
	Locate and View Output

	The Shim Command Line
	Choosing the Mode
	Choosing Options
	Deciding Where to Run the Shim

	Troubleshooting Connect Problems

	Using the Shim
	The trading-shim Command Set
	Commands to Control the Shim
	Commands that Trigger Requests

	IB tws api Protocol Events
	Requests to the IB tws
	Messages from the IB tws
	Requests
	Messages

	The Downstream Text Protocols
	The Command Language
	The Shim Output Format

	Adding Info to the Database
	Adding Symbols and Contracts to the Database
	Data for the table Underlying
	Data for the table Symbol
	Data for the table Contract

	II Reference
	Languages and IO
	The Binary Upstream Protocols
	Portability and the Tranfer Encoding
	Common Features
	The Client -- IB tws Handshake

	The Shim Output Channels
	File Writes
	Database Posts

	The Database Architecture
	Patterns, Tables, and Classes
	Significant Design Patterns Used in the Shim
	Binding Patterns
	The Singletree
	Type Symbols
	Factories, Accumulators, and Wrappers

	The Shim Database
	Database and Other Scripts

	The Type System
	The Fundamental Three-Way Partition for Types
	Multiple Inheritance in the Type System
	Input Matching
	The Full Hierarchy
	Application Finite Domain Dual Types

	Atoms: the Routeable Objects
	Database Tuples
	The Event Hierarchy

	IO Stream Objects
	Time-related State
	The TimeStamp
	The Clock
	The Timer
	The Scheduler
	The Task Set

	Stages of Computation
	Initialization Via Construction of the Singletree
	one::Constants
	iof::IoFlow
	one::Router
	Delayed initialization
	Modes, Options, and Commands
	Building the Internal Database Dependency Graph

	IO Selection and Event Scheduling
	Calculating the Processor Clock Frequency
	Finite State Automata Definitions
	Query Data Bar Intervals

	Input Analysis
	The Internal Database Update Algorithm
	The Event Input Algorithm
	Tokenization and Type Checking

	Object Routing and Processing
	The Subscription Watchlist Update Algorithm

	Output Processing
	Request Sending
	Dbms Post
	Event Logging

	The Position, OrderContext Command
	The Wire Command
	Order Wire Format Specification

	Dealing with Broken Compiles Caused by Preprocessor Macros

	Exploring the Sources Directly
	Roadmap

	III Appendices
	Related Command Scripts
	The Makefile
	Database and Table Setup
	Database Setup
	Table Creation and Recreation
	Common Table Creation Scripts

	The Regression Test Scripts
	bin/regress
	bin/unsafe
	bin/includes

	The Filter Scripts
	bin/c++.filter
	The Log Selectors
	The Binary Converters

	Directed Graph Diagram Construction

	Error Messages and Exceptions
	Library Components and Usage
	Singletons and Constants
	The Components Singleton
	The Memory Allocator
	The Token Type Hierarchy

	Strings, Ids, Hash Codes, and Text Buffers
	The String Component
	Hash Code Computation
	Buffer Types and Their Uses

	Equivalence Classes and Logic Variables
	Representing Equality Theories Via Disjoint Set Union
	Single Assignment Pointers as Logic Variables

	Block-Doubling Containers
	Block-Doubling Via Handles
	Vectors and Queues
	Splay Trees
	Hashed Functions

	Mostly Declarative Tables and Sequences
	Logical Tables
	Sequences

	System Call Wrappers

